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Abstract Elasmobranch populations face world-
wide declines owing to anthropogenic stressors, with
lethal and sub-lethal consequences. Oxygen uptake
rates (MO,, typically measured in mg O, kg~' h™")
can be quantified as proxies of whole-organism
aerobic metabolic rates and are relevant to fisheries
management and conservation through aerobic per-
formance’s relationship with fitness and spatial ecol-
ogy. The purpose of this review was to better
understand how MO, has been and can be applied to
predict how elasmobranch populations will respond to
current and future anthropogenic stressors. We iden-
tified 10 studies spanning 9 elasmobranch species that
quantified MO, to understand elasmobranch popula-
tions’ responses to exposure to anthropogenic stres-
sors. Studies measuring responses to climate change
stressors (ocean warming and acidification, declining
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oxygen content, increasing storm frequency) were
most common. Studies with relevance to fisheries
stressors used MO, to approximate energetic costs of
capture and estimate recovery times in bycatch
scenarios. Ecotourism encounters were investigated
in the context of increases in energetic requirements
owing to anthropogenic disruption of diel activity
cycles. Furthermore, we discuss how an understanding
of MO, in elasmobranchs has been and can be applied
to predict populations’ responses to anthropogenic
stressors with deliverables for improving species
management and conservation. Specifically, MO,
can be applied to predict population-level responses
to stressors by quantifying associations between MO,
and fitness-related processes, spatial ecology, and
impact on ecosystem function (via bioenergetics
modelling). This review is meant to serve as a call-
to-action to further bridge the gap between experi-
mental biology and elasmobranch conservation in the
“good Anthropocene”.
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Introduction

Elasmobranch populations (sharks and rays) have seen
worldwide declines that necessitate better protection
for threatened populations and improved management
for sustainable populations (Simpfendorfer and Dulvy
2017; Dulvy et al. 2017). Overall, elasmobranchs are
one of the most threatened vertebrate taxa, partly
owing to their life history characteristics that limit
species’ abilities to rapidly respond to anthropogenic
threats (Dulvy et al. 2014; Stein et al. 2018). Over-
exploitation and bycatch, habitat loss, and climate
change have been identified as predominant threats
driving declines in many species (Chin et al. 2010;
Dulvy et al. 2014). Population declines can occur as a
result of direct mortality (e.g., harvest), but also via
sub-lethal effects (Wilson et al. 2014). Considering
sub-lethal effects is important for understanding
outcomes following an animal’s exposure to a stressor
because sub-lethal effects can have cryptic fitness
consequences (Romero et al. 2009). The efficacy of
management tools (i.e., ecological risk assessments,
stock assessments, etc.) could be improved with
physiological data that quantifies sub-lethal responses,
thereby allowing for a better understanding of ani-
mals’ responses to current threats, and the ability to
predict responses to anticipated threats (Horodysky
et al. 2016; McKenzie et al. 2016). Effectively
addressing threats that elasmobranchs are currently
facing and predicted to face in the future will require
examining species’ susceptibility to both lethal and
sub-lethal outcomes.

Physiological studies have much to offer elasmo-
branch conservation. Defining physiological mecha-
nisms underlying conservation problems can provide
important information to support management deci-
sions (Cooke et al. 2013), including fisheries manage-
ment (Horodysky et al. 2016; Illing and Rummer
2017). Numerous studies on elasmobranch species
have taken physiological approaches to address
prominent conservation issues, such as characterizing
injury and stress from commercial and recreational
fisheries capture (Skomal and Mandelman 2012) to
measuring whole-organism responses to climate
change (Rosa et al. 2017). Notably, physiologically-
informed models of the condition of southern stingrays
(Hypanus americanus) at an ecotourism site provided
managers with evidence suggesting a need to regulate
anthropogenic influences on these animals (Semeniuk
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et al. 2010; Madliger et al. 2016). As such, there is a
utility in implementing and refining physiological
tools that are both informative and palatable to
conservation practitioners and stakeholders (Cooke
and O’Connor 2010; Madliger et al. 2018). In
particular, there has been a general call to investigate
physiological markers used elsewhere for their appli-
cability as “new” tools to measure stress or predict
mortality for elasmobranchs following exposure to
anthropogenic stressors (Van Rijn and Reina 2010;
Awruch et al. 2011; Guida et al. 2016). Such
approaches can help to realise the benefits that
physiological research can provide toward elasmo-
branch conservation.

Changes in oxygen uptake rates (MO,, typically in
mg O, kg~' h™") can be informative of whole-organ-
ism responses to stressors. The MO, of fishes have
been quantified since the nineteenth century as a proxy
for metabolic rates and therefore a fundamentally
important metric for understanding the behavioural
and physiological ecology of an organism (Brown
et al. 2004; Nelson 2016). Conservation-focused
studies on fishes have quantified MO, to address
conservation problems, such as those relating to
species’ or populations’ vulnerabilities to environ-
mental change and anthropogenic stressors (Horo-
dysky et al. 2016; McKenzie et al. 2016; Illing and
Rummer 2017). For instance, MOz has been used as
proxy for various fitness-related metrics to understand
vulnerability of many marine ectotherms to climate
change (Portner et al. 2017; Jutfelt et al. 2018). For
elasmobranchs, studies quantifying MO, focus largely
on quantifying metabolic costs in a behavioural and
physiological ecology context, with relatively few
measuring responses to stressors. Indeed, while var-
ious studies of stress in elasmobranchs claim that
metabolic rates (i.e., M 0,) should explain species- and
population-level variation in elasmobranchs’ vulner-
ability to stressors, a general lack of empirical
evidence highlights a mismatch between what con-
servation-minded studies claim and can support
(Skomal and Mandelman 2012).

The purpose of this review was to better understand
the utility of quantifying whole-organism performance
(i.e., MO,) to predict how elasmobranch populations
will respond to current and future anthropogenic
stressors. We accomplish this goal in two steps. We
first describe studies that quantify MO, with the
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specific objective of predicting elasmobranch popula-
tions’ responses to various anthropogenic stressors; in
so doing, we briefly discuss the specific MO, traits that
were measured. Second, we discuss how M02 data
have, and can, be applied to predict elasmobranch
populations’ responses to various anthropogenic stres-
sors. In so doing, this review is intended to serve as a
call to action in further bridging the gap between
elasmobranch conservation and experimental biology
(Cooke et al. 2017).

Methods

To achieve our first objective of reviewing how MO,
has been quantified to predict elasmobranch popula-
tions’ responses to stress, we first targeted all studies
that directly measured MO,. We included the follow-
ing caveats in our literature search: (1) only whole-
organism—including embryos—MO, was considered
and not that of perfused tissues; (2) studies measuring
MO, of catheterized or perfused animals were also
considered. A systematic literature search of all
published research since 1965 (i.e., no theses) was
conducted on 1 June 2018 using the Thomas Reuter’s
Web of Science database with the following search
terms: (elasmobranch* OR shark* OR chondrichth*
OR dogfish*) AND (oxygen* OR metabol* OR
transport* OR binding OR capacity OR respir* OR
aerobic* OR ventilat* OR 02 OR gas* OR blood OR
h*emato* OR h*emoglobin* OR consum* OR scope).
The authors acknowledge that although MO, denotes
oxygen uptake strictly in milligrams of O, per unit
mass per unit time (oxygen uptake was classically
measured in millilitres of O,; V 0s), MO, will be used
throughout to generically refer to oxygen uptake rates
(Rummer et al. 2016). Because targeted studies
approximated whole-organism metabolic rate via rates
of oxygen uptake, this study preferentially refers to
MOZ rather than “metabolic rates” (Nelson 2016).
Indeed, we acknowledge that there are several thor-
ough reviews of MO, in elasmobranchs (Carlson et al.
2004; Bernal et al. 2012). Herein, we briefly describe
the few studies that have quantified MO, in response to
targeted stressors, and then describe how these data
have been, and can be, applied to predict current and

future elasmobranch populations’ physiological and
behavioural responses.

Results and discussion

Estimating MO, to understand stress
in elasmobranchs

Commonly measured MO traits to quantify stress

This review identified 81 studies of MO, spanning 35
shark and ray species (of nearly 1200 total species), of
which only 10 studies spanning 9 species were relevant
to directly quantifying elasmobranch populations’
responses to anthropogenic stressors (Table 1). Five
MO, traits were commonly measured in studies
measuring stress responses and are discussed below.
The minimum M O, of a quiescent, fasted fish at rest
and at stable temperatures represents its M OoMin
(Chabot et al. 2016b) and can be a proxy for estimating
routine/resting or standard metabolic rates. M Oonin 18
the most commonly measured component of elasmo-
branchs’ metabolic phenotype, and is often the only
metric measured (Carlson et al. 2004; Bernal et al.
2012). Changes in M OMmin 1N TESpPONSE tO Stressors can
be interpreted as changes in the minimum energetic
investment in maintenance, although interpretation is
less meaningful without reference to other compo-
nents of the metabolic phenotype (Hannan and Rum-
mer 2018). The effects of environmental change on
MOZMin are well-described elsewhere; briefly, elas-
mobranchs generally exhibit transient changes in
Mozmm in response to osmoregulatory and/or acid—
base challenges (e.g., hyposalinity or hypercapnia),
MOZMin is highly sensitive to environmental oxygen
saturation, and elasmobranchs are not known to
thermally compensate (i.e., restoration of MOsin
following temperature change) (Carlson et al. 2004;
Tullis and Baillie 2005; Bernal et al. 2012; Hannan
and Rummer 2018). While MO,y is a desirable
metric to measure, it has been argued that, for sharks,
the lowest swimming MO, is a more ecologically
relevant metric than MOzMin because obligate ram-
ventilating species cannot achieve MOy, in the wild
anyway (Lowe 2001). Indeed, M O,min can be approx-
imated for obligate-ram ventilating species by
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Table 1 Studies that use oxygen uptake to understand responses of elasmobranch populations to anthropogenic stress

Stressor Treatments Metrics Species (n = 9 of ~ 1200) References (n = 10 of 81)
Climate pCO3, pOs, AS!, EPOC?,  Chiloscyllium punctatum™®>, Heinrich et al. (2014), Rosa et al. (2014),
change salinity®, M O3y M Galeorhinus galeus°‘3, Hemiscyllium Green and Jutfelt (2014), Di Santo
temperatured Ovtas M ocellatum™>, Leucoraja (2015), Morash et al. (2016), Di Santo
Olswim erinacea®®' =" Mustelus et al. (2016) and Di Santo (2016)
antarcticus®>, Scyliorhinus
canicula™">*
Fisheries Exhaustive AS', EPOC?,  Carcharhinus melanopterus'™, Bouyoucos et al. (2017b, 2018)
stressors exercise M O3y, M Negaprion brevirostris'™
O%M8X7 M
O2swim
Ecotourism  Diel activity M Oy, M Triaenodon obesus Barnett et al. (2016)
encounters Osswim

Lettered superscripts indicate the conditions species were tested under, and numbered superscripts indicate the metrics that were

measured. For instance, the notation Chiloscyllium punctatum
and temperature (d)

a,d,3

indicates that M OoMin (3) was measured in response to pCO, (%)

AS aerobic scope, EPOC excess post-exercise oxygen consumption, MO>yz,, maximum oxygen uptake rate, MOy, minimum
oxygen uptake rate, pCO, partial pressure of carbon dioxide, pO, partial pressure of oxygen, MOss,,;,, SWimming oxygen uptake rate

#)M O,swim quantified as tail-beats in L. erinacea embryos

extrapolating MO,-activity level relationships to zero
activity, although this approach may overestimate
MOonn (Roche et al. 2013; Di Santo et al. 2017).
Alternatively, Monin can be measured for obligate
ram-ventilating animals that have been chemically
immobilized, but this is a lethal endpoint (Carlson and
Parsons 2003; Dowd et al. 2006b).

The highest MO, value achievable under sustained
maximal activity or following fully exhaustive exer-
cise represents maximum MO, (MOo,y), Which
serves as a proxy for maximum metabolic rate (Norin
and Clark 2016). In elasmobranchs, M OoMax 18 limited
by the capacity of the cardiorespiratory system for
oxygen transport (Hillman et al. 2013), and changes in
response to stressors represent changes in the upper
limit for oxygen uptake. Relatively few studies have
quantified MOy for any elasmobranch in the
context of characterising metabolic costs, and fewer
have quantified changes in MO,y in response to
stressors. To date, the available literature suggests
equivocal effects of aquatic acidification (via carbon
dioxide) on MOxyx and no temperature effect; no
other stressors, like reduced oxygen availability, have
been tested (Green and Jutfelt 2014; Di Santo 2016).
Research on Carcharhinus melanopterus corroborates
an absent temperature effect on MOopax (IA Bouy-
oucos, unpublished data); although, challenges
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associated with measuring MOoy.x for fishes, such
as behavioural versus physiological fatigue in swim-
ming respirometry chambers or compounding beha-
vioural effects of aquatic acidification should invoke a
healthy scepticism of the precision of MOayax
estimates, especially for elasmobranchs (Peake and
Farrell 2006; Lefevre 2016). Clearly, it is difficult to
quantify M OMmax for many elasmobranchs; M OoMax 18
typically estimated via swimming in a swimming
respirometry chamber or upon chasing to exhaustion
(Norin and Clark 2016; Rummer et al. 2016). The
former swims fish in a flume or swim tunnel over a
range of increasing flow velocities for a fixed period of
time and constant velocity increment and estimates
MO, at each flow velocity; MO ax 1S typically
estimated as the MO, value at the flow velocity when
fish recruit anaerobic metabolism to support swim-
ming and fatigue. The latter method encourages fish to
burst swim in a small pool for a fixed period of time
(usually minutes) or until the fish no longer responds
to chasing stimuli, after which animals can be air
exposed before being placed in a resting respirometry
chamber to measure MO,. Some species are too large,
even as juveniles, to swim in flume respirometry
chambers, or are simply not amenable to forced
swimming (Brett and Blackburn 1978; Lowe 2001;
Sepulveda et al. 2007). Chasing to exhaustion can
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produce similar MOopay estimates to swimming in a
flume for some teleosts (Killen et al. 2017), but it
remains to be determined whether chasing is a viable
alternative to swimming elasmobranchs in a flume to
generate accurate MOZMax estimates. Anecdotally,
M02Max measured after exhaustion in a flume was
higher than measured after chasing for juvenile
Negaprion brevirostris (Bouyoucos et al. 2017a, b).

Aerobic scope (AS) represents the oxygen available
to support multiple oxygen-demanding processes
above M Oomin and can be calculated as the difference
between (or ratio of) MOQMaX and MOy, (Clark et al.
2013). Changes in AS are often interpreted as changes
in an organism’s capacity to use oxygen for fitness-
related processes (e.g., growth, reproduction, etc.)
(Fry 1947; Claireaux and Lefrancois 2007; Farrell
2016). Among teleost fishes, studies have documented
associations between AS and species’ ecology (e.g.,
life-history traits), and can even explain variation
among physiological and behavioural traits (Clark
et al. 2013; Metcalfe et al. 2016; Killen et al. 2016).
Aerobic scope was first referenced in the elasmo-
branch literature in 1988, or 41 years after its incep-
tion (Fry 1947; Du Preez et al. 1988). Several studies
provide enough information to calculate AS post hoc
(Brett and Blackburn 1978; Graham et al. 1990; Lowe
2001; Bouyoucos et al. 2017a, 2018), but only two
have directly tested factors that affect AS in the
context of climate change (Green and Jutfelt 2014; Di
Santo 2016). Stress physiology studies have suggested
that the intensity and magnitude of the elasmobranch
stress response during fishing capture is associated
with AS, yet none have directly tested this hypothesis
(Skomal and Mandelman 2012). The MOy, data
appear to support this idea indirectly, where sluggish,
benthic species with low MOsin experience lower
mortality than active or ram-ventilating species (Sko-
mal and Bernal 2010; Dapp et al. 2016). Furthermore,
lamnid and sphyrnid sharks are predicted to have the
highest AS among elasmobranchs (Lowe 2001;
Sepulveda et al. 2007); yet, lamnid sharks generally
exhibit high resilience to stress and high post-release
survivorship, whereas sphyrnid sharks experience
tremendously high at-vessel and post-release mortality
(Marshall et al. 2012; Gallagher et al. 2014; Butcher
et al. 2015; French et al. 2015). Thus, studies that
directly quantify AS are necessary to fully support or
refute this hypothesis.

Excess post-exercise oxygen consumption (EPOC)
represents an increase in MO, to resolve a physiolog-
ical stress response following exhaustive exercise
(Gaesser and Brooks 1984; Wood 1991; Milligan
1996). Studies of sharks and rays have measured
EPOC as a proxy of anaerobic exercise capacity, to
quantify the energetic cost of an activity, and as a
means for estimating time to recover following
exhaustive exercise (Brett and Blackburn 1978;
Bouyoucos et al. 2017a; Di Santo et al. 2017). The
presence of EPOC alone can be indicative of a stress
response, and changes in the magnitude of EPOC and
recovery time can reflect differences in the intensity of
stressors (e.g., exhaustive exercise vs fishing capture)
and/or changes in an organism’s capacity to respond to
stress. However, sharks and rays can incur EPOC
simply by swimming at routine activity levels; indeed,
some elasmobranchs recruit anaerobic metabolism to
support sub-maximal swimming (Piiper et al. 1977; Di
Santo and Kenaley 2016; Di Santo et al. 2017). The
duration and magnitude of EPOC measured for sharks
and rays is variable and appears to be related to the
duration and intensity of activity. For instance,
exhaustion following maximal aerobic swimming
resulted in a shorter recovery period and smaller
EPOC than exhaustive chasing for juvenile N. brevi-
rostris (Bouyoucos et al. 2017a, b). In addition, EPOC
and recovery time exhibit sensitivity to environmental
stressors; juvenile Leucoraja erinacea take longer to
recover following exhaustive exercise under aquatic
acidification conditions (Di Santo 2016). Previously,
studies have referred to animals experiencing—or
paying back—an “oxygen debt” from relying on
anaerobic metabolic pathways during exercise (Piiper
et al. 1977; Brett and Blackburn 1978). It should be
noted that the term “oxygen debt” implies a causal
mechanism underlying the increase in metabolic rate
post-exercise; “EPOC” avoids such confusion (Gaes-
ser and Brooks 1984).

The range of submaximal MO, values of swimming
sharks and rays (i.e., swimming MO,) can be the most
energetically costly and variable component of an
elasmobranch’s energy budget (Lowe 2001). As such,
changes in swimming MO, can represent changes in
energy allocation within the available AS, where more
time and energy invested in activity over possible
fitness-related processes can increase an individual’s
susceptibility to mortality (Priede 1977). At routine
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activity levels, available data suggest that sharks’
swimming MO, accounts for 25-46% of their AS
(Brett and Blackburn 1978; Lowe 2001; Dowd et al.
20064, b; Bouyoucos et al. 2017b); similar data do not
exist for rays. Increases in swimming MO, with
activity become proportionally less at higher temper-
atures; although, swimming MO, at a given velocity
increases with temperature (Du Preez et al. 1988;
Whitney et al. 2016; Lear et al. 2017). Furthermore,
the swimming speed with the lowest cost of transport
increases with temperature, making life at higher
temperatures inherently more costly (Whitney et al.
2016). Swimming MO, also changes in sharks
exposed to hypoxia, but responses likely reflect
changes in activity levels rather than changes in the
cost of activity; obligate ram-ventilating species
generally increase activity levels to minimize time in
the hypoxic zone, and buccal-pumping species appear
to decrease activity (Parsons and Carlson 1998;
Carlson and Parsons 2001). Finally, bio-logging and
biotelemetry technologies have made it possible to
estimate swimming MO, in situ by calibrating MO,
across an ecologically relevant range of activity levels
(and temperatures) with electronic tag outputs (e.g.,
acceleration) (Barnett et al. 2016; Bouyoucos et al.
2017a; Lear et al. 2017).

Climate change

Climate change is a threat to elasmobranch popula-
tions, and studies have quantified M02 to better
understand the extent of physiological impairment
elasmobranchs may experience (Rosa et al. 2017).
Ocean acidification is the most-investigated stressor
(Heinrich et al. 2014; Rosa et al. 2014; Green and
Jutfelt 2014; Di Santo 2015, 2016), despite only
recently being considered a threat to elasmobranchs
(Chin et al. 2010; Rummer and Munday 2017; Rosa
et al. 2017). Thus far, ocean warming has only been
investigated alongside acidification (Rosa et al. 2014;
Di Santo 2015, 2016). The effects of declining oxygen
levels on MO, have been investigated to understand
species’ hypoxia tolerance in the context of climate
change (Heinrich et al. 2014; Di Santo et al. 2016).
Similarly, the effects of salinity on MO, have received
attention, but only one study to date has investigated
the effects of changing salinity in the context of
increasing storm frequency with climate change
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(Carlson et al. 2004; Morash et al. 2016). The paucity
of available literature highlights knowledge gaps
regarding changes in aerobic (i.e., MOnppax and AS)
and anaerobic (e.g., EPOC) capacity in response to key
climate change stressors (i.e., ocean acidification and
warming, declining oxygen content). In addition, there
are a lack of studies investigating species in high
trophic positions (e.g., large mesopredators or apex
predators), including tropical or deep-sea species
(Rosa et al. 2017). Finally, studies have investigated
elasmobranch’s capacity for developmental and
reversible acclimation, but no study to date has
investigated sharks’ or rays’ capacity for transgener-
ational acclimation (Donelson et al. 2018).

Ocean acidification and warming are predicted to
have negative consequences for oxygen uptake rates
(MOsmin, MOoaaxs and AS) in embryonic, juvenile,
and adult sharks and rays. Both temperate and tropical
species are expected to have higher MO,y and are
predicted to develop—from the early embryonic
stages—faster under warming and acidification con-
ditions, but neonates may exhibit reduced body
condition and lower survival than conspecifics reared
under current-day conditions (Rosa et al. 2014; Di
Santo 2015; Gervais et al. 2016). The effects of
acidification alone on MOz, MOQMM, and AS are
equivocal (Heinrich et al. 2014; Green and Jutfelt
2014; Hannan and Rummer 2018). However, acidifi-
cation appears to lengthen recovery from exhaustive
exercise, and exacerbates the effects of warming on
MOzMin, MOy, and AS (Rosa et al. 2014; Di Santo
2015; Lefevre 2016; Di Santo 2016). There is also
evidence of population-level differences in MO, and
responses to warming and acidification (Di Santo
2015, 2016). Temperature sensitivity of MO, in
elasmobranchs should be expected; mitochondrial
ATP production becomes increasingly inefficient at
high temperatures (i.e., increased proton leak across
mitochondrial membranes), ectothermic species have
relatively temperature-sensitive haemoglobins, and no
species has been documented to exhibit thermal
compensation of MOy, (Tullis and Baillie 2005;
Schulte 2015; Bernal et al. 2018). Furthermore,
elasmobranchs’ apparent resilience to some of the
effects of ocean acidification may be a result of
elasmobranchs’ high plasma buffering capacities and
ability to maintain haemoglobin-oxygen affinity (i.e.,
weak or absent Bohr-shifts) under acidotic conditions,
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relative to teleosts (Berenbrink 2005; Morrison et al.
2015). Indeed, elasmobranchs appear to possess
physiological mechanisms to maintain MO, under
acidotic conditions; although, the mechanism is dif-
ferent to that in teleosts and has not yet been identified
(Hannan and Rummer 2018).

The effects of hypoxia on MO, in the context of
climate change have been investigated for elasmo-
branchs with confined distributions (i.e., benthic
species and embryos in egg cases). Briefly, a common
hypoxia tolerance metric is the oxygen level at which
MOo\in can no longer be regulated, and decreases
with declining oxygen content (Wood 2018). The
epaulette shark, Hemiscyllium ocellatum, a species
renowned among elasmobranchs for its hypoxia
tolerance, did not experience changes in MOZ or
hypoxia tolerance under elevated pCO, (Heinrich
et al. 2014). Egg-bound embryonic L. erinacea reared
at 15 °C were found to reduce MO, but increase tail-
beating activity (i.e., for ventilation) at moderately
low oxygen saturations, possibly supporting their
activity anaerobically (Di Santo et al. 2016). Indeed,
metabolic scope (tail-beating MO>~MOnyy;,) for
embryonic L. erinacea was higher at 18 °C and
20 °C relative to 15 °C, which suggests embryonic
L. erinacea could have a greater capacity for tail-
beating and tolerating hypoxia under warming (Di
Santo 2015; Di Santo et al. 2016). Elasmobranchs are
generally considered to have poor hypoxia tolerance
(Routley et al. 2002); elasmobranch haemoglobins
generally have higher oxygen affinities than teleost
haemoglobins, but lack comparable mechanisms to
improve oxygen delivery, such as increases in haema-
tocrit, strong pH-sensitivity of haemoglobins, or a -
adrenergic stress response at the red blood cells (Brill
and Lai 2015; Morrison et al. 2015). Clearly, more
research is needed to characterize the responses of
elasmobranchs to hypoxia in the context of climate
change.

The effects of changing salinity on elasmobranchs
are variable and dependent on the duration of expo-
sure. The frequency of storm and drought events are
predicted to increase as climate change progresses,
and these environmental challenges could have con-
sequences for salinity exposure (e.g., acute changes in
MOZMin), particularly in coastal and estuarine envi-
ronments (Morash et al. 2016; Tunnah et al. 2016).
Sharks (Galeorhinus galeus and Mustelus antarcticus)

that were acutely exposed to changes in salinity over a
48-h period exhibited changes in MOy, (Morash
et al. 2016; Tunnah et al. 2016). Increases in M OoMin
can represent increased osmoregulatory maintenance
costs, while reduced MO, may relate to reductions
in Hb—O, affinity. Notably, the potential mechanism
underlying changes in MOoyi, in response to osmotic
challenges, the osmorespiratory compromise, has not
been identified in elasmobranchs (Tunnah et al. 2016).
Given the relevance of increased frequency and
severity of storm events with climate change, further
investigation into the effects of osmotic challenges on
elasmobranchs is warranted.

Fisheries stressors

The energetic costs and recovery times associated with
fisheries capture have been estimated by quantifying
EPOC. Chasing protocols supplemented with air
exposure are often employed in teleost stress studies
because these techniques induce a similar physiolog-
ical disturbance as fishing capture and handling (Clark
et al. 2012; Currey et al. 2013). For example, EPOC
estimated by chasing juvenile N. brevirostris to
exhaustion was paired with swimming MO, estimated
from acceleration data from juveniles hooked on
experimental longlines to produce an estimate of the
total energetic cost of a longline capture event
(Bouyoucos et al. 2017b). In this case, capture resulted
in a 58% increase in energy expenditure during a 1-h
capture event; although, the estimated 5-h recovery
costs only represented a 2% increase in daily activity
energy expenditure (Bouyoucos et al. 2017b). Alter-
natively, the cost of the initial struggling period during
capture can be estimated by immediately transferring
animals to respirometry chambers in situ; using this
approach, gill-net capture was estimated to increase
the daily activity energy expenditure of juvenile C.
melanopterus by 15% and required almost 9 h of
recovery (Bouyoucos et al. 2018). Estimates of MO,
may also partially explain inter-specific variation in
stress responses following capture. When compared to
N. acutidens, the reduction in blood pH following gill-
net capture and delayed mortality rates were both less
pronounced (Bouyoucos et al. 2018).
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Ecotourism encounters

Finally, MO, has been applied to understand the
energetic costs of human-wildlife encounters. Human-
wildlife encounters, such as those mediated through
ecotourism, can be a source of stress for elasmo-
branchs (Brena et al. 2015; Gallagher et al. 2015).
Interacting with wildlife tourism operations has been
demonstrated to affect MO, in elasmobranchs through
changes in diel activity levels (Barnett et al. 2016).
Specifically, changes in activity levels have been
related to swimming MOZ and MOZMin through
calibrated relationships between MO, and telemetry
device output (i.e., overall dynamic body acceleration
as a proxy of MO, and metabolic rate). For instance,
provisioning was documented to increase oxygen
uptake rates of whitetip reef sharks (Triaenodon
obesus) by increasing activity levels during the day
when sharks would normally rest (Barnett et al. 2016).
Although this is the only instance where MO, has been
applied to understand elasmobranchs’ responses to
stress associated with human-wildlife encounters, it is
also possible to quantify MO, as it applies to
provisioning via specific dynamic action (SDA; the
increase in MO, during digestion and assimilation of
food). Large meals, such as those that might occur for
bold sharks that consistently feed or sharks that gorge
during competitive interactions, may reduce aerobic
capacity by reducing the available AS for other
oxygen-demanding processes (Norin and Clark
2017). Indeed, single provisioning events can satiate
sharks for days (Brunnschweiler et al. 2018). Given
concerns that human-wildlife encounters can have
consequences for the health of sharks and rays
(Semeniuk et al. 2010), MO, can be applied to
quantify stress, especially in the context of bioener-
getics, that is associated with ecotourism.

Predicting population-level responses from MO,
data

To date, laboratory studies of MO, in elasmobranchs
have largely taken a basic approach to characterising
metabolic costs. While the studies presented in this
review take an applied approach in estimating MO, to
achieve conservation-minded objectives, these stud-

k)

ies’ application toward predicting species- or
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population-level responses to the investigated anthro-
pogenic stressors can be vague. Herein, we attempt to

demonstrate how estimates of MO, for elasmobranch
populations can be of relevance to elasmobranch
fisheries management and conservation. Specifically,
we discuss how MO, estimates (with an emphasis on
AS) can be applied to predict changes in fitness, spatial
ecology, and bioenergetics for elasmobranch popula-
tions (Claireaux and Lefrangois 2007; Horodysky
et al. 2016).

Fitness

Aerobic scope has well-documented associations with
fitness-related processes (i.e., growth and reproduc-
tion) among teleost fishes, such that AS can be applied
to understanding and predicting population-level
responses to stressors (Claireaux and Lefrancois
2007; Farrell 2016). For some species and populations,
AS is optimized under specific environmental condi-
tions; deviation from optimal conditions can result in a
decrease in AS that may translate to a decrease in
organismal fitness (Fry 1947). Given that the abiotic
conditions of the ocean are predictably changing
owing to global climate change, AS has emerged as an
attractive metric for predicting changes in fitness as
climate change progresses (Farrell 2016; Portner et al.
2017). Indeed, the concept of an optimum temperature
for AS (i.e., a “bell-shaped” thermal performance
curve), is central to the oxygen- and capacity-limited
thermal tolerance (OCLTT) hypothesis, that has been
applied to predict species’ responses to ocean warm-
ing and acidification, and has been consulted by
managing bodies like the Intergovernmental Panel on
Climate Change (IPCC; Portner et al. 2017). There-
fore, elasmobranch species’ or populations’ vulnera-
bility to climate change stressors can (potentially) be
assessed by constructing thermal performance curves
for AS and related fitness metrics (e.g., growth rates,
reproductive investment, etc.) under the OCLTT
framework. Such an approach has, thus far, only been
applied to two populations of L. erinacea, with a focus
on embryos and juveniles (Di Santo 2015; Lefevre
2016; Di Santo 2016). Applying MO, for these two
populations of L. erinacea to the OCLTT framework
suggested that temperatures exceeding the thermal
optimum for aerobic performance in embryos was
associated with increased mortality, while juveniles
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experienced sub-lethal reductions in aerobic (i.e., AS)
and anaerobic (i.e., escape endurance) performance
(D1 Santo 2015, 2016). It should be noted, however,
that AS is a controversial metric for predicting the
vulnerability of ectotherms to climate change, and
indeed, the ubiquity of the OCLTT hypothesis is
highly controversial (Jutfelt et al. 2018). It has also
been suggested that multiple performance metrics
ought to be considered, given that different metrics
may be optimized under different conditions (Clark
et al. 2013). However, given the general lack of
measurement of AS in elasmobranchs, further studies
to improve our understanding of frameworks like the
OCLTT for predicting elasmobranch populations’
responses to climate change are warranted (Lefevre
2016).

As a consequence of ocean warming, fishes are
predicted to achieve smaller maximum body sizes
according to the temperature-size rule, and measuring
MO, can help elucidate the extent of the “shrinkage”
threat to elasmobranchs. The temperature-size rule
highlights a well-documented negative correlation
between body size and temperature, and although the
specific underlying mechanism is unclear, it may be
related to oxygen supply and, therefore, MO, (Forster
et al. 2012; Audzijonyte et al. 2018). A highly
controversial hypothesis (gill-oxygen limitation, or
GOL) posits that a mismatch between oxygen demand
at elevated temperatures and capacity for supply
across the gills owing to geometric constraints limits
fishes’ maximum body size (Pauly and Cheung 2017).
In other words, for a sufficiently large fish, AS is
entirely devoted to M O,wmin, and increases in temper-
ature increase MOoysin, thereby reducing the size when
AS is zero. Empirical evidence from elasmobranch
studies suggests that MOoyy;, is proportionally less in
larger fishes, and that gill surface area scales with a
similar exponent (Wegner 2015; Bigman et al. 2018).
Substantial evidence from teleost literature suggests
that MOoppax scales with body mass with a similar
exponent as Monim such that AS could not be
reduced to zero (i.e., to only support MOyi,) as fish
grow (Killen et al. 2016; Lefevre et al. 2017, 2018).
Mass- and temperature-scaling (i.e., Q;q, the expo-
nential increase in MO, over a 10 °C increment) data
for MOopax do not exist for elasmobranchs. Indeed,
there is a dearth of information on mass- and

temperature-scaling data for MO, in elasmobranchs,
and these data would be of great importance for
understanding the mechanism by which elasmo-
branchs may be expected to shrink as climate change
progresses and for modelling the potential apparent
shrinkage. Given that hypotheses like GOL have
received support from management bodies like the
International Union for Conservation of Nature
(IUCN), there is certainly interest in applying MO,
data to understand how climate change will affect
elasmobranch populations.

Spatial ecology

Temperature’s profound effect on MO, of ectotherms
has been used to link aerobic performance with habitat
use and species redistributions, partially in the context
of climate change (Portner and Farrell 2008; Sunday
et al. 2012). Indeed, various performance metrics,
including AS, are thought to be linked with popula-
tions’ thermal niche, such that populations may occur
at temperatures near their optimal temperature for
performance (Speers-Roesch and Norin 2016; Payne
et al. 2016). Latitudinal shifts in boundary tempera-
tures (i.e., where performance is reduced) may,
therefore, coincide with shifts in species’ distributions.
Studies of elasmobranchs have provided indirect
evidence of relationships between performance met-
rics related to M02 (i.e., activity) and distribution,
with one suggesting distribution shifts for Galeocerdo
cuvier with ocean warming as sharks “follow” water
temperatures that optimize activity performance
(Payne et al. 2016, 2018). Studies have also provided
evidence of shifts in the distribution of pelagic and
coastal sharks with warming, although without offer-
ing evidence of links to aerobic performance (Hazen
et al. 2013; Bangley et al. 2018). Overall, there is
much interest for management and conservation in
characterising species redistributions for managing
changes in ecosystem function and even human
wellbeing (Pecl et al. 2017). Indeed, species redistri-
butions can be explained or even predicted by the
influence of factors like temperature on MO,. Most
notably, a physiologically-informed habitat suitability
model, centred around estimates of AS, predicted
vertical habitat compression for commercially impor-
tant Thunnus albacares in response to climate change
driven warming, acidification, and deoxygenation of
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the pelagic environment (Del Raye and Weng 2015).
Ultimately, field and laboratory studies that take an
ecophysiological approach to measuring whole-ani-
mal performance in elasmobranchs (i.e., MO,) can
generate meaningful model inputs for predicting
changes in species’ and populations’ habitat use in
response to anthropogenic stressors like climate
change.

Bioenergetics

Finally, MO, has direct application to elasmobranch
fisheries management and application, through its
input value in bioenergetics models. For most simpli-
fied bioenergetics models, consumption requirements
are modelled as the sum of energy invested in
metabolism (i.e., M 0,), generation of waste products,
and somatic investment (i.e., growth and reproduc-
tion) (Sundstrom and Gruber 1998; Lowe 2002).
Specifically, MOnyin and swimming MO, are valuable
model inputs; swimming MO, can be the most
variable and energetically costly activity in a fish’s
daily regime (Lowe and Goldman 2001; Bernal and
Lowe 2015). Data on at least mass- and temperature-
scaling of MO, should be available to generate precise
model estimates that are sensitive to environmental
change (Dowd et al. 2006a; Chen et al. 2008; Dale
et al. 2013). Bioenergetics models can then be applied
to predict consumption requirements of current pop-
ulations with the goal of quantifying a population’s
influence on ecosystem function; for high trophic-
level species, models can suggest the extent to which
populations exert top-down control and contribute to
mortality of other commercially important species
(Dowd et al. 2006a; Barnett et al. 2017). Furthermore,
models can be applied to predict changes in consump-
tion requirements for populations in response to
threats like climate change, so that inference can be
drawn about future ecosystem function (Luongo and
Lowe 2018). Therefore, there is clear support from the
literature for applying MO, to create bioenergetics
models for elasmobranch populations to support
management and conservation goals.
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Conclusions and future directions

As this review highlights, there is potential for
measuring MO, to predict responses of elasmobranch
species and populations to anthropogenic stressors.
Indeed, aquatic respirometry techniques and best-
practice guidelines for measuring MO, are becoming
increasingly accessible (Chabot et al. 2016a).
Resources are readily available to construct respirom-
etry chambers, automated pump systems, and even
oxygen meters (Svendsen et al. 2016). Studies have
even overcome restrictions for working with large
animals that have precluded MO, measurement for
some species (Graham et al. 1990; Sepulveda et al.
2007; Ezcurra et al. 2012; Payne et al. 2015); although,
many species of sharks do not grow larger than 1 m as
adults.

Is there utility in estimating MO, to understand and
predict elasmobranch species’ and populations’
responses to stressors? As this review demonstrates,
MO, has application to understanding species’
responses to various anthropogenic stressors (e.g.,
climate change, fisheries stressors, and ecotourism
encounters), and can ultimately be applied to predict
changes in organismal fitness, spatial ecology, and
impact on ecosystem function (i.e., via bioenergetics
modelling). However, without a foundation of empir-
ical evidence, elasmobranch conservation efforts may
be missing critical physiological information under-
lying species’ or populations’ responses to current and
future anthropogenic stressors (Chin et al. 2010;
Lefevre 2016). For instance, we are unaware of any
study to date that relates aspects of aerobic perfor-
mance in elasmobranchs to behavioural traits, such as
boldness, that may influence risk-taking or even
catchability in fisheries (Redpath et al. 2010; Lennox
et al. 2017). Elasmobranchs are certainly a group of
fishes that have borne the brunt of anthropogenic
influence in the natural world. Diseminating tried-and-
tested techniques with tangible deliverables to
improve management and conservation of imperilled
taxa is paramount to transitioning from an Anthro-
pocene extinction to a “good Anthropocene” (Madli-
ger et al. 2017).
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