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Abstract Corals and coral-associated species are highly
vulnerable to the emerging effects of global climate
change. The widespread degradation of coral reefs, which
will be accelerated by climate change, jeopardizes the
goods and services that tropical nations derive from reef
ecosystems. However, climate change impacts to reef
social-ecological systems can also be bi-directional. For
example, some climate impacts, such as storms and sea
level rise, can directly impact societies, with repercussions
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for how they interact with the environment. This study
identifies the multiple impact pathways within coral reef
social-ecological systems arising from four key climatic
drivers: increased sea surface temperature, severe tropical
storms, sea level rise and ocean acidification. We develop a
novel framework for investigating climate change impacts
in social-ecological systems, which helps to highlight the
diverse impacts that must be considered in order to develop
a more complete understanding of the impacts of climate
change, as well as developing appropriate management
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actions to mitigate climate change impacts on coral reef
and people.

Keywords Social-ecological - Coral reef - Climate
change - Multiple impacts

Introduction

Climate change has rapidly emerged as one of the major
long-term threats to coral reefs (e.g. Hoegh-Guldberg et al.
2007; Hughes et al. 2003; McClanahan and Cinner 2012).
Numerous studies have quantified the ecological impacts of
disturbance on coral reefs and examined how projected
increases in ocean temperature, acidity and the increasing
frequency of high-intensity storm events will impact coral
communities (De’ath et al. 2012), and reef-associated
organisms, principally fishes (e.g. Wilson et al. 2006).
These studies are important in understanding how climate
change will impact on the sustainability and productivity of
coral reef fisheries (Bell et al. 2013; Burrows et al. 2014,
Cheung et al. 2010). Aside from fisheries impacts, little is
known about how climate change may impact coral reef-
dependent human societies and the major drivers and
pathways through which this may operate (Carpenter et al.
2009; Daw et al. 2009).

Millions of people, primarily from developing countries,
are heavily dependent on the goods and services provided
by coral reefs (Teh et al. 2013). These goods and services
include fisheries, tourism, coastal protection, habitat pro-
vision for valuable species and cultural values (Hicks
2011). An emerging literature has begun to explore the
vulnerability of coastal societies to climate change impacts
on marine fisheries and ecosystem health (Bell et al. 2013;
Béné et al. 2012; Marshall and Marshall 2012). To date,
most of these studies tend to take a uni-directional view of
impact pathways (i.e. climate change impacts key aspects
of the ecosystem, which in turn impacts society) (e.g.
Allison et al. 2009; Cinner et al. 2012; MacNeil et al.
2010). However, climate change may not only interrupt the
flow of goods and services to society, but may also alter
how people interact with reefs, creating potential pathways
from society to ecosystems (Butler and Oluoch-Kosura
2006; Cinner et al. 2011; Daw et al. 2009). Critically, coral
reefs are linked social-ecological systems (Kittinger et al.
2012; Walker and Meyers 2004), meaning that the changes
in the ecological domain may influence social dynamics
and vice versa.

A major impediment to understanding the impacts that
climate change will have on human societies dependent on
coral reefs, and vice versa, is the limited consideration of
multiple pathways through which impacts can manifest,
especially indirect and bi-directional linkages among
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distinct components of social-ecological systems. Frame-
works exist that reflect the interdependent nature of
human-environment systems (e.g. Kittinger et al. 2012),
but the majority of research on climate change and coral
reefs is focused on unidirectional flow of both benefits and
impacts from environment to people (e.g. Bell et al. 2013).
Here, we contribute to expanding this emerging field of
research in two important ways. First, we explicitly con-
sider the multitude of pathways through which select cli-
mate drivers (e.g. increasing temperatures) will impact
coral reefs and reef-dependent societies, exploring the
existence of well-supported or hypothesized linkages
across relevant components of the social-ecological sys-
tem. Secondly, we also highlight key instances when the
impact pathways are expected to be bi-directional (e.g. also
flow from people to ecosystems). Our review of impact
pathways focuses on four distinct climate drivers: (1)
increasing sea surface temperature; (2) increasing fre-
quency and/or intensity of storms; (3) sea level rise; and (4)
ocean acidification. This is not to say other environmental
changes (e.g. depth stratification and declines in vertical
mixing, shifts in the position and strength of ocean cur-
rents, and changes in rainfall and freshwater input) will not
have equally important or even greater impacts on coral
reefs and reef-dependent societies. However, it is not our
intention to comprehensively assess the multitude of
impacts arising from sustained and ongoing climate
change. Rather, we present key exemplars to provide a
focus for understanding the existence of multiple impact
pathways.

Potential impacts of climate change on coral reef
ecosystems have been extensively reviewed (e.g. Hoegh-
Guldberg et al. 2007; MacNeil et al. 2010; Pratchett et al.
2008; Wilson et al. 2006), as have (to a lesser extent) the
flow-on effects to reef-dependent and coastal societies
(e.g. Allison et al. 2009; Badjeck et al. 2010; Burke et al.
2011; Cinner et al. 2012; McClanahan and Cinner 2012).
The novelty of this study is not only to understand
impacts of climate change on coral reefs and reef-de-
pendent societies, but explicitly recognize that societal
responses may in turn impact on natural resources and the
environment. Our approach was centred around five key
components of the social-ecological system: (1) Envi-
ronment, which includes aspects of habitat availability,
water chemistry, primary productivity and the structural
complexity of the benthic habitat; (2) Population
dynamics of exploited or ecologically important organ-
isms, including dispersal and intrinsic growth rates; (3)
Resource availability, which includes abundance, rich-
ness, distribution and behaviour; (4) Fisheries, which
includes aspects of yield, fishing effort and variability;
and (5) Societal well-being, which includes livelihoods,
human health and safety, infrastructure and cultural
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values (Fig. 1a). These five components of the social—
ecological system were developed based on expert opin-
ion of the authors and are intended to be representative
rather than comprehensive, providing an explicit focus for
analyses of multiple links and impact pathways. For each
of these components, we reviewed published studies to
establish whether there are likely or documented impacts
arising from each of the distinct climatic drivers (in-
creasing temperature, storms, sea level rise and ocean
acidification). Moreover, we reviewed evidence of bi-

directional linkages between each successive pair of the
five social-ecological components, thereby highlighting
the multiple impact pathways through which climate
change will impact coral reef social-ecological systems.
Exploration of multiple links and impact pathways among
the major social-ecological components was necessarily
constrained to specific mechanisms by which impacts may
become manifest, e.g. changes in the overall yield, effort
or variability in yields for fisheries (Fig. 1a). These sub-
components are broadly reflective of anticipated and well-
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studied impacts, but are certainly not intended to capture
the comprehensive range of potential impacts.

Sea surface temperatures (Fig. 1b)

Increasing atmospheric and ocean temperatures is the most
pervasive effect of increasing concentrations of atmo-
spheric greenhouse gases (Hartmann et al. 2013) with
direct biological impacts (e.g. Hughes 2000; Walther et al.
2002). Sea surface temperature (SST) of the tropical oceans
has warmed ~ 0.08 °C/decade over the period 1950-2011
(Lough 2012). Under relatively optimistic future green-
house gas emission reductions, projected increases in SST
range from ~0.5 to 1.5 °C by mid-century (Kirtman et al.
2013) and from ~0.7 to 2.5 °C by the end of the twenty-
first century (Collins et al. 2013). Significant increases in
thermal fluctuations, as well as higher frequency and
duration of hot temperature extremes, are also projected
(Collins et al. 2013; Walther et al. 2002).

Key impact pathways

The most apparent impact of ocean warming on coral reef
ecosystems, to date, has been the recurrence of mass
bleaching events (e.g. Donner et al. 2005) where ambient
temperatures exceed the critical thermal limits of many
coral species (Donner 2009). These bleaching events
reduce coral fitness (Howells et al. 2013) and may cause
widespread coral mortality (Eakin et al. 2010; McClanahan
2004). In 1998, for example, up to 90 % of habitat-forming
corals were lost in many parts of the Indian Ocean (Graham
et al. 2006). Extensive coral mortality results in large-scale
changes to the reef environment, such as habitat loss and a
collapse of the structural complexity of coral reef archi-
tecture (large red arrow between sea surface temperature
and environment in Fig. 1b; Graham et al. 2006). In the
absence of sufficient herbivores, these changes can further
alter the environment through phase shifts to algal-domi-
nated states (Hughes et al. 2010). Directional shifts in the
structure of coral reef habitats further impact the popula-
tion and community dynamics of reef-associated organ-
isms, generally leading to declines in abundance and
diversity of fish (e.g. Pratchett et al. 2011; Wilson et al.
2006), and other associated organisms (Stella et al. 2011).

Aside from climate-induced changes in habitat structure,
ocean warming can also directly impact population
dynamics such as the physiology, behaviour and fitness of
reef-associated organisms. Tropical species, such as reef
fishes tend to have very narrow thermal tolerances and also
live very close to their upper thermal limits (e.g. Dillon
et al. 2010; Donelson et al. 2010; Rummer et al. 2014;
Tewksbury et al. 2008), making them extremely vulnerable
to sustained increases in baseline temperature, as well as
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acute fluctuations in maximum temperatures (Munday et al.
2008). In responding to sustained and ongoing temperature
increases, coral reef organisms may move to higher lati-
tudes or increasing depths (Cheung et al. 2009). However,
coral reef organisms (both fish and invertebrates) exposed
to high temperatures may experience accelerated devel-
opment (Figueiredo et al. 2014; Heyward and Negri 2010;
McLeod et al. 2013; O’Connor et al. 2007), increased
growth rates (e.g. Fulton et al. 2014; Munday et al. 2008),
reduced body size (Daufresne et al. 2009), lower fecundity
(McClanahan et al. 2009) and increased metabolic rates
(Rummer et al. 2014). These changes may lead to reduced
abundance and fitness of affected populations, as well as
reduced connectivity among populations.

The sensitivity of reef-associated organisms to increas-
ing temperatures and extreme hot weather events varies
greatly, depending on specific thermal limits and local
thermal history (Munday et al. 2012). Importantly, there
are likely to be winners and losers (Graham et al. 2014;
Pratchett et al. 2011). For example, not all reef fish species
decline in abundance (at least in the short term) following
bleaching-induced changes to reef habitats. Some species
exhibit rapid and pronounced increases in abundance after
bleaching (green arrows from environment, through pop-
ulation dynamics, and resource availability in Fig. 1b;
Cinner et al. 2013; Pratchett et al. 2011). It is likely that
some fishers will be able to take advantage of these
changes to receive at least short-term increases in fish
catch. For example, fishing gears that target herbivorous
fishes may see short-term catch increases after a coral
bleaching event (Cinner et al. 2013), but these may not
carry through to an increase in income for the wider fishery
(McClanahan et al. 2008). In the longer-term, temperature-
induced changes to benthic habitat complexity and avail-
ability are expected to erode reef productivity and ulti-
mately lead to reductions in fishery yields and fishers’
livelihoods (Barange et al. 2014; Bell et al. 2013; Graham
et al. 2007; Williamson et al. 2014). However, the empir-
ical evidence of climate-induced changes upon resource
availability, the fishery and associated societal well-being
have yet to be conclusively demonstrated (indicated by
dotted arrows between fishery and societal wellbeing in
Fig. 1b; MacNeil et al. 2010). Importantly, this does not
mean that climate change cannot impact societal well-be-
ing through this pathway. These changes are complex and
difficult to detect (given the SST changes to date), and
there is a paucity of research on reef fisheries attempting to
disentangle these causal links (e.g. how temperature-in-
duced changes to dispersal may impact the distribution and
abundance of key target species).

The direct impacts of increased SST in tropical oceans
can also affect human well-being and human health (red
arrow directly from sea surface temperature to societal
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wellbeing in Fig. 1b). For example, increasing SST can
result in increased phytoplankton blooms that are related to
incidents of shellfish poisoning (Allison et al. 2009;
Baschieri and Kovats 2010), toxic dinoflagellates such as
Gambierdiscus spp. associated with ciguatera fish poison-
ing (Chateau-Degat et al. 2005; Tester et al. 2010), and
conditions conducive to cholera outbreaks because the
Vibrio cholerae bacterium thrives in warmer waters (Cec-
carelli and Colwell 2014; Lipp et al. 2002). The socioe-
conomic impacts of human health-related incidents due to
microbial outbreaks include health-related costs, loss of
labour productivity, loss of a food source, loss of reef fish
sales in both local and international markets, and changes
to the social, cultural and traditional characteristics of
fishing communities (Rongo and van Woesik 2012). These
impacts affect the well-being of people directly, but also
indirectly through a loss of tourism (Westmacott et al.
2000). In particular, the potential increase in production of
harmful viruses and biotoxins could have severe implica-
tions for societies unprepared for their increased preva-
lence and range expansions (Hallegraeff 2010).

Severe tropical storms (Fig. 1c)

The effects of climate change (specifically, ocean warm-
ing) on the frequency and severity of tropical storms (e.g.
cyclones and hurricanes) are complex (Haig et al. 2014;
Klotzbach 2006; Landsea et al. 2006; Webster et al. 2005).
Intuitively, increasing SST will increase energy and
intensity of severe tropical storms, and consistent with this
link, several recent analyses suggest that extreme wave
heights have been increasing over the last decades (Elsner
et al. 2008; Hoyos et al. 2006; Young et al. 2011). How-
ever, fluctuations in the frequency and intensity of tropical
cyclones make it very difficult to detect clear long-term
trends, especially during the period that there have been
unequivocal increases in atmospheric temperature due to
anthropogenic forcing (Knutson et al. 2010). Empirical
data point to recent declines in the incidence of high-in-
tensity tropical storms (Callaghan and Power 2011), yet the
global incidence of high-intensity tropical storms (e.g.
category 5 cyclones) is expected to increase with ocean
warming (Knutson et al. 2010).

Key impact pathways

Severe storms can cause extensive physical damage to
coral reef environments (thick red arrow between storms
and environment in Fig. 1c; De’ath et al. 2012). For
example, physical disturbance during intense storms frac-
tures carbonate reef foundations (McAdoo et al. 2011; Nott
and Hayne 2001), reducing live coral cover and structural
complexity by 80-100 % (Harmelin-Vivien 1994). This

physical damage also redistributes sediment and rubble,
which increases water turbidity and can smother some reefs
(McAdoo et al. 2011; Scoffin 1993; Vanwoesik et al. 1991;
Woodley 1980). Storm impacts are correlated to frequency
and/or intensity of events and, in general, negatively affect
coral reef social-ecological systems. Yet, storm events can
also facilitate windows of opportunity for renewal within
ecological systems. For instance, intense storms have
scoured algal-covered reefs, providing opportunities for
corals to recruit (indicated by green arrow between storms
and environment in Fig. 1c; Graham and Nash 2013).

The physical disturbance caused during and after storms
also impacts population dynamics such as recruitment,
settlement and survival of coral and fish larvae (Lassig
1983), which, in turn, reduce the abundance and diversity
of species, with potential impacts to the fishery. Several
studies have attempted to quantify changes to fish abun-
dance following a storm, with inconsistent results. For
example, Fenner (1991) found that fish populations were
largely unaffected over 22 months following a severe
storm in Mexico. Lassig (1983) found little effect on adult
fishes, but high juvenile mortality and re-distribution of
sub-adult fishes after 27 months post-storm on the Great
Barrier Reef, Australia. Further, in a longer-term study,
Halford et al. (2004) found that of 26 fish species analysed
on the GBR, 23 decreased in abundance post-storm(s), with
all but two species recovering to pre-disturbance levels
after 10 years.

Storms can also directly affect aspects of resource
availability (Fig. 1c). For instance, some fish species
change their behaviour and movement patterns in storms
(Heupel et al. 2003; Kawabata et al. 2010; Locascio and
Mann 2005). These changes can in turn influence the
catchability of fishes and/or reduce their availability to
fishers, impacting fishery yields, incomes and adding to the
inherent variability in a fishery (Tobin et al. 2010). For
example, Marshall and Marshall (2012) reported reduced
catches nine months after category 5 Cyclone Yasi on the
Great Barrier Reef. Storms therefore have a mix of short-
and long-term effects on resource availability. Where
major structural changes occur on the reef environment,
long-term effects are highly likely.

Severe storms can also directly impact social well-be-
ing, imposing significant risk to infrastructure, human
health and safety. For instance, extreme surface waves
produced by typhoons/cyclones can propel large parts of
carbonate reef (e.g. 14 m waves moving 235-tonne boul-
ders, Goto et al. 2011) to cause major damage to landing
sites, boats and gear, with knock on effects to coastal
livelihoods and incomes. In Antigua and Barbuda, damage
and loss of fishing fleet assets resulted in an estimated
decrease of 24 % in gross revenues (Mahon 2002). Dam-
age to fishery infrastructure and reduced fleet capacity
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could also have flow-on effects that result in increased
resource availability and population dynamics (indicated
by green dotted arrows between fishery, resource avail-
ability and population dynamics in Fig. 1c; Baird et al.
2005). Damage to reefs from storms can also directly affect
societal well-being because tourists may stop visiting cer-
tain reefs that have experienced severe storm damage, with
flow-on effects to tourism-dependent livelihoods. Severe
direct effects on aspects of societal well-being such as
health, safety and the loss of life following extreme events
can further cascade into chronic impacts on other house-
hold and community aspects of life (Blythe et al. 2013;
Westlund et al. 2007).

In addition to direct mechanical damage, storms can
lead to increases in rainfall, severe flooding, runoff and
surface currents. These in turn can cause elevated catch-
ment runoff (e.g. freshwater, sediment, nutrients and pol-
lutants), enhanced coastal erosion and increases in marine
sediment re-suspension which all result in declining coral
and fish health (Cheal et al. 2013; Fabricius and Wolanski
2000; Goatley and Bellwood 2012; Mallela et al. 2007,
Wenger et al. 2012, 2013, 2014), as well as potential
habitat loss. Storm surges can directly impact societal well-
being by lowering the availability and quality of limited
freshwater sources of atoll nations (Bridges and
McClatchey 2009). The microbial community in both the
water column and surface biofilms is also altered by runoff
and sedimentation, and while these shifts may be bio-
indicators of change (Witt et al. 2012), they are also
associated with a shift towards greater organism disease.
These community shifts towards pathogenic microbial
communities is linked to the emergence of disease in ver-
tebrate and invertebrate hosts (Sandin 2009; Thurber et al.
2012) and also within human populations using reef
resources (Burge et al. 2014). Negative feedbacks between
run-off, ecosystem decline and human health will be fur-
ther exacerbated in developing regions where wastewater
treatment infrastructure is limited.

Sea level rise (Fig. 1d)

There is considerable uncertainty about the likely magni-
tude of sea level rise, in part due to the unpredictable nature
and instability of key ice sheets. Sea level is currently
rising at approximately 3.2 mm per year due to thermal
expansion of the ocean and melting of land ice, and the rate
of change is accelerating (Rhein et al. 2013). Continued
melting of the polar ice sheets will increase sea level rise,
by as much as 3-5 m by 2100 (Overpeck et al. 2006). Coral
reef ecosystems are generally resilient to sea level fluctu-
ations, and even rapid changes in the geological past (e.g. a
2- to 3-m jump with years to decades approximately
121,000 years ago) have had only minor impacts on the
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growth and development of reef assemblages (Blanchon
et al. 2009). Increase in sea level does, however, pose a
significant threat to the millions of people who inhabit
coastal villages and cities (Overpeck et al. 2006).

Key impact pathways

Sea level rise is perhaps the most unique climate change
driver in that it is not expected to have profound direct
negative effect on coral reef environments because accre-
tion rates of coral are generally sufficient to keep pace with
sea level rise. In fact, coral reefs in some locations might
benefit due to increased habitat availability (i.e. coral reefs
growing upwards as coral recolonizes the tops of currently
mature reefs, and as corals expand into areas currently too
shallow for them to inhabit; dotted green arrows from sea
level rise to environment in Fig. 1d). Humans may benefit
from this increased habitat availability through increased
primary productivity, resource availability, fishery yields
and, ultimately, increased fisheries productivity. However,
coral reef-associated species could be negatively affected
by sea level rise if they depend on habitats that are not
capable of vertical migration as the sea rises (e.g. coastal
development may prevent mangrove forests or turtle nest-
ing beaches from moving inland; dotted red arrows in
Fig. 1d).

While there could be minor ecological benefits to coral
reefs, sea level rise is expected to have direct negative
impacts on societal well-being (thick red arrow in Fig. 1d).
Rising seas, especially when combined with severe storm
events, threaten coastal infrastructure. Damage to ports and
docks could reduce fishing fleet capacity, creating negative
impacts on livelihoods yet alleviating pressure on marine
resources (red arrow between societal well-being and
fishery, and slow on green arrows to resource availability
and population dynamics in Fig. 1d; Adger et al. 2005).
Many low-lying tropical islands are in peril, and whole
nations may become uninhabitable, for example, atoll
nations such as Kiribati (McCarthy et al. 2001). Climate
change-induced migration has been linked to increased
possibilities for violent conflict (e.g. in areas of in-migra-
tion) and is likely to have greater impacts upon poorer
members of coastal societies (Reuveny 2007). While this
form of migration, if planned strategically, also has
potential benefits (e.g. income diversification) and can be
viewed as an adaptive response to environmental condi-
tions (Black et al. 2011), it is important to bear in mind that
biophysical changes enter stratified social systems, mean-
ing that impacts are experienced differentially due to class,
castes, gender, profession, race, ethnicity, age and ability
(Marino 2012). Sea level rise is likely to create variable
social impacts in places like the Pacific where fishing
strategies vary by cultural group, gender and habitat fished
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(coastal reef, lagoon and outer reef; Kronen and Vunisea
2009). The links between sea level rise, human migration
and well-being are thus complex and context dependent
(Black et al. 2011; Farbotko and Lazrus 2012).

Ocean acidification (Fig. 1e)

Increased atmospheric CO, is readily dissolved into the
world’s oceans, leading to marked changes in seawater
chemistry (most notably declines in pH, carbonate ion
concentrations and carbonate saturation state), commonly
referred to as ocean acidification (Caldeira and Wickett
2003). Rapidly rising atmospheric partial pressure of car-
bon dioxide (pCO,) over the last century has induced a
lowering of oceanic pH by ~0.1 units (from ~8.25 to
~8.14, Orr et al. 2005). Estimates of future atmospheric
pCO, (Portner et al. 2014) suggest a further decrease of 0.3
pH units by the end of the century (Caldeira and Wickett
2003). These marked and sustained changes in seawater
chemistry of oceanic waters (e.g. Doney et al. 2009) are
raising concerns. However, seawater chemistry in near-
shore environments (e.g. within the immediate vicinity of
corals reefs) is highly variable, fluctuating over diurnal
(due to respiration and photosynthesis of coral reef
organisms), tidal and seasonal cycles, and daily extremes
often exceed the projected levels of pCO, and pH to occur
by the end of the century in open ocean waters (Albright
et al. 2013; Guadayol et al. 2014; Hofmann et al. 2011;
Shaw et al. 2013).

Key impact pathways

A wide range of coral reef organisms, from calcifying
algae through to large piscivorous fishes, are affected by
exposure to extreme levels of pCO, or reduced pH (De’ath
et al. 2009; Munday et al. 2013; Pandolfi et al. 2011;
Fig. le). For calcifying organisms, such as reef-building
corals, the concern is that low levels of aragonite saturation
will increase the energetic cost of calcification, thereby
compromising skeletal growth and/or development (Doney
et al. 2009). By 2050, sustained declines in aragonite sat-
uration are expected to cause 10-50 % reduction in calci-
fication rates of key reef-building corals relative to pre-
industrial rates (Kleypas and Langdon 2006; Kleypas and
Yates 2009; Langdon and Atkinson 2005). The decline in
calcium carbonate production, coupled with an increase in
calcium carbonate dissolution, may result in reduced cover
of corals, coralline algae and other calcareous reef-building
organisms, leading to marked declines in reef growth and
topographic structure of reef habitats (red arrow between
ocean acidification and environment in Fig. le). Although
some coral species are able to internally buffer their pH
(Dissard et al. 2012; McCulloch et al. 2012), a study on

coral reefs exposed to volcanic CO, seeps in PNG showed
a loss of many coral species, which resulted in reduced
coral diversity and a shift to corals of low structural
complexity and calcification rates (Fabricius et al. 2011). A
loss in structural complexity (e.g. Graham et al. 2006;
Wilson et al. 2006) and coral diversity (e.g. Messmer et al.
2011) is expected to have negative impacts on fish pro-
ductivity (dotted red arrows between environment, popu-
lation dynamics, resource availability and fishery in
Fig. le).

Early life history stages of coral and fishes are also at
high risk from ocean acidification (red arrow between
ocean acidification and population dynamics in Fig. le).
Exposure to reduced pH has been shown to affect devel-
opment and suppress metamorphosis of some coral larvae
species (e.g. Nakamura et al. 2011), but not fishes. Nega-
tive impacts on early life history biology are particularly
significant for the maintenance of genetic diversity and for
the re-establishment of corals after disturbances such as
mass bleaching events.

For other reef organisms, such as fishes, ocean acidifi-
cation may compromise sensory systems, impair behaviour
(dotted arrows between ocean acidification and resource
availability in Fig. 1le; Munday et al. 2014; Nilsson et al.
2012) and increase energetic costs to compensate tissue
acidosis (Portner and Farrell 2008). Results from these
studies suggest that fish exposed to near-future CO, levels
exhibit impaired olfaction (e.g. distinguishing the smell of
a predator; Dixson et al. 2010; Munday et al. 2009, 2014),
decision-making and learning (Chivers et al. 2014;
Domenici et al. 2012; Ferrari et al. 2012). Some fish even
exhibit bolder behaviour and increased anxiety when
exposed to elevated CO, (Hamilton et al. 2014; Munday
et al. 2013, 2014). However, the effects of near-future CO,
levels on physiological performance have been mixed.
While some species appear to be negatively affected
(Munday et al. 2009), other species exposed to elevated
CO, exhibit either no change (Couturier et al. 2013; Yates
and Halley 2006) or even exhibit enhanced scope for aer-
obic performance (dotted green arrows between ocean
acidification and resource availability in Fig. le; Couturier
et al. 2013; Munday et al. 2014; Rummer et al. 2013).
Furthermore, studies have found that rearing fish under
near-future CO, levels resulted in increases in reproduction
and larger larvae and juveniles in comparison with control
counterparts (Miller et al. 2012, 2013). Although current
evidence suggests that coral reef fishes can maintain or
even enhance the scope for aerobic metabolic performance
under elevated CO,, there is considerable variation among
species’ level responses to elevated CO, and ocean acidi-
fication, as reflected in studies on behaviour. Therefore,
trade-offs likely exist among critical life history traits (e.g.
behaviour and physiological performance) that are not yet
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well understood, but could result in serious implications for
the replenishment of fish populations and patterns of pop-
ulation connectivity in coral reef ecosystems. Impact
pathways through resource availability, fishery and societal
well-being have not been conclusively demonstrated
because ocean acidification processes will unfold over
multi-decadal timescales.

Caveats and future considerations

Our attempts to highlight the multiple impact pathways
through which climate change will affect coral reef social—
ecological systems represent an important first step in
synthesizing and guiding this emerging field of research,
but has some shortcomings that could potentially be
addressed as new research becomes available. Most nota-
bly, our synthesis focused on the direct impacts of four key
climate drivers, but synergistic impacts, feedbacks and
indirect impact pathways will likely potentially play an
even more important role, and our appreciation of such
impacts is currently very limited. Even among the direct
impacts, there are major differences in the understanding
and confidence surrounding impact pathways, partly attri-
butable to differences in the timing of impacts (e.g. there
are already impacts from SST and storms, whereas sea
level rise and ocean acidification impacts will take time to
emerge). As such, we fully expect that new impact path-
ways will emerge with ongoing research in this field. Even
so, it is important to document the diverse impact pathways
that are already apparent or understood, in order to develop
a complete understanding of the impacts of climate change,
as well as developing appropriate management actions to
mitigate climate change impacts in coral reef social-eco-
logical systems.

Documenting the impacts of interacting pathways will
become increasingly critical as novel, unanticipated inter-
actions emerge. For example, ocean acidification is likely
to increase susceptibility of corals to the mechanical
damage caused by storms because reductions in pH reduce
coral skeleton density and strength (Hoegh-Guldberg et al.
2007; Madin et al. 2008). Decreases in calcification rates
may also be exacerbated with associated increases in ocean
temperature, as has already been observed for crustose
coralline algae (Anthony et al. 2008; Martin and Gattuso
2009). However, to date, observational and experimental
research on how synergies between key climate drivers
affect coral reef systems is very limited (Ban et al. 2014).
Consequently, our synthesis focused on each individual
driver, rather than potential synergies among them. As
more research on synergistic impacts becomes available,
this will be a crucial area of research. Similarly, feedbacks
between social and ecological dynamics can exacerbate the
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impacts of key climate drivers (Cinner et al. 2011). How-
ever, empirical and experimental research on how key
climate drivers may create feedbacks in coral reef social—
ecological is also limited (Nystrom et al. 2012).

Some of the biggest impacts from climate change may
be the indirect and unpredictable pathways on human
responses, policies and changing market structures. Much
of the uncertainty about the impacts of climate change on
social-ecological systems arises due to the variability of
human responses to change. In many instances, these
linked dynamics have the potential to create both positive
and negative feedbacks between social and ecological
domains. For example, reduced fisheries yields associated
with climate change (Cheung et al. 2009) may cause some
fishers to exit the fishery (reducing fishing pressure, thus
dampening environmental impacts), while other fishers
may increase effort to supplement losses (potentially
amplifying environmental impacts) (Cinner et al. 2011).
Already in Mozambique, small-scale fishers have begun to
fish into the open ocean in response to declining inshore
catches resulting from overfishing; their un-motorized
vessels are ill-equipped to cope with increasingly severe
tropical storms leading, in the worst cases, to loss of lives
(Blythe et al. 2013). At a larger scale, policy responses,
motivated by a range of agendas from personal to political,
will feedback into reef systems with differential impacts on
individuals, groups and societies. In the Maldives, for
example, climate change adaptation discourses are being
used to legitimize unfavourable government resettlement
programs, despite resistance from local people (Kothari
2014). Changing market structures, political unrest and
demographic trends in coral reef-dependent societies will
likely interact with key climate drivers to produce profound
changes in the social-ecological system. Yet, to date,
research on these types of impacts is extremely limited
(Daw et al. 2009). Considerable research is required into
the range of motivation and impacts of people’s responses
to climate change (Barnett and O’Neill 2010; Marino and
Ribot 2012), and also how climate change will differen-
tially impact cultures, geographies and segments of
societies.

Conclusion

This study highlights a diversity of pathways in which
sustained and ongoing climate change will impact coral
reef ecosystems and reef-dependent societies. The relative
importance of different linkages and major impact path-
ways varies according to the specific climate drivers being
considered. For example, sea level rise is likely to only
have strong direct impacts on societal well-being, but
limited direct impacts on reef ecosystems. In contrast,
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ocean warming will have direct impacts to multiple com-
ponents of coral reef ecosystems, with flow-on effects to
societal well-being. Despite these important differences,
existing research into impacts of climate change on coral
reefs is highly biased towards one or two key pathways,
which almost invariably ascribe major impacts on human
societies to declines in overall fisheries yields (e.g. Cinner
et al. 2012), largely ignoring broader understandings of
climate impacts on societal well-being that are becoming
established in other social-ecological systems (e.g. Adger
et al. 2005) and the potential for bi-directionality. An
important corollary of this is that that established links are
as much a reflection of inherent bias in prior research, as
they are indicative of major links and impact pathways.

By explicitly highlighting the specific pathways through
which climate drivers can directly or indirectly influence
ecosystems and societies, we hope to stimulate research
into previously overlooked (or poorly understood), but
potentially important pathways, to expedite a more com-
prehensive understanding of climate impacts on social—
ecological systems associated with coral reefs. Most
notably, there needs to be increased attention given to non-
fisheries linkages between reef environments and reef-de-
pendent societies. Notwithstanding emergence of even
more diverse impact pathways, this will provide a more
thorough and comprehensive understanding of the impacts
of climate change, illustrating how impacts on coral reef
environments can and will affect reef-dependent societies,
and that societal responses may in turn impact on natural
resources and the environment. This is fundamental in
developing appropriate management actions to mitigate
climate change impacts in coral reef social-ecological
systems.
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