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Abstract Elasmobranch (i.e. sharks, skates, and rays)
behaviours have been found to align with moon phases;
yet, it is not fully understood how the moon influences
elasmobranchs’ foraging habits. In coastal ecosystems,
tidal changes are typically seen as the primary influence on
the behavioural rhythms of fishes, which are linked to the
lunar cycle. Sharks have been documented to synchronise
behaviours, such as foraging patterns, with the phases of the
moon, but studies have yet to clearly separate and identify
the mechanisms by which the lunar phase affects these pat-
terns. The island of Moorea, French Polynesia, serves as a
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nursery habitat for neonatal blacktip reef and sicklefin lemon
sharks within the South Pacific amphidromic system, which
experiences minimal tidal ranges (~0.2 m). This setting
provides a unique opportunity to isolate the lunar cycle’s
effects from tidal influences. We compared catch rates of
neonates of both shark species and foraging success, through
stomach content analysis, of blacktip reef sharks across the
lunar cycle. Our findings did not support the hypothesis of
lunar-induced entrainment of foraging patterns for these neo-
natal reef sharks. However, understanding the environmen-
tal factors that shape the behavioural patterns and foraging
strategies of neonatal reef sharks is becoming increasingly
important against the backdrop of human disturbances.

Second language abstract (French) Les comportements des
élasmobranches (les requins et les raies) peuvent étre influencés
par les phases de 1a lune. Cependant, on ne comprend pas entiere-
ment comment la lune influence leurs habitudes alimentaires
dans la recherche de nourriture. Dans les écosystemes cotiers,
les rythmes des marées sont généralement considérés comme
le facteur principale modifiant les rythmes et les comporte-
mentaux des poissons, avec un effet confondant avec le cycle
lunaire. Ainsi, les requins peuvent synchroniser leurs comporte-
ments, notamment leurs habitudes de recherche de nourriture,
avec les phases de la lune, mais ces changements de comporte-
ments n’ont pas été bien étudiés chez les élasmobranches a ce
jour. Les études menées n’ont pas encore clairement séparé et
identifié les mécanismes par lesquels la phase lunaire affecte ces
comportements. L’ile de Moorea sert de lieu de nurserie pour
les requins a pointe noire et les requins-citrons dans le systéme
amphidromique du Pacifique Sud, avec des marées minimales
(~0.2 m). Cette situation offre une opportunité exceptionnelle
d’isoler les effets du cycle lunaire de 1’influence des marées.
Nous avons comparé les modeles d’activité en utilisant les don-
nées de capture des nouveau-nés des deux especes de requins
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et leur succes quant a la recherche de nourriture en analysant
le contenu de I’estomac des requins a pointes noires a travers le
cycle lunaire. Nos résultats ne confirment pas 1’hypothése d’un
entrainement de I’activité ou de la recherche de nourriture induit
par la lune pour ces requins de récifs nouveau-nés. Compren-
dre les facteurs environnementaux qui fagconnent les modeles
d’activité et les stratégies de recherche de nourriture des requins
de récifs néonataux devient de plus en plus important dans le
contexte des perturbations humaines.

Keywords Carcharhinus melanopterus - Foraging
behaviour - French Polynesia - Moon phase - Negaprion
acutidens

Introduction

Synchronised behaviours of animals with the monthly phases
of the moon have been demonstrated across a wide range of
taxa (Grant et al. 2009; Lang et al. 2006; Naylor 2001; Prugh
& Golden 2014; York et al. 2014), and the effects of the
lunar cycle appear to be particularly important in the marine
environment (Naylor 2001). Through both direct (e.g. light
availability) and indirect effects (e.g. gravitational pull and
geomagnetic activity), the celestial latitude of the moon can
influence reproduction (Mercier & Hamel 2009; Mercier
et al. 2011; Skov et al. 2005; Takemura et al. 2010), move-
ment (Alldredge & King 1980; Benoit-Bird et al. 2009; Last
et al. 2016; Lohmann & Willows 1987), foraging activity
(Cruz et al. 2013; Payton & Tran 2019; Yamamoto et al.
2008), and predator—prey dynamics (Fallows et al. 2016) of
marine organisms. Furthermore, several fisheries-depend-
ent surveys reported increased shark catches around the full
moon (e.g. raggedtooth sharks Carcharias taurus in South
Africa [Wintner & Kerwath 2018]), new moon (e.g. several
Carcharhinus spp. in Australia [Lee et al. 2018] and South
Africa [Wintner & Kerwath 2018]; blue sharks Prionace
glauca in Australia [Lowry et al. 2007]; and white sharks C.
carcharias in Australia [Werry et al. 2012], California [Pyle
et al. 1996], and South Africa [Weltz et al. 2013; Wintner
& Kerwath 2018]) or bimonthly, around the first and third
quarters (e.g. copper sharks C. brachyurus and tiger sharks
G. cuvier in South Africa [Wintner & Kerwath 2018]).

In coastal ecosystems, tidal variation is often considered
to be the major process entraining behavioural rhythms to
the lunar cycle. Indeed, variation in tidal height can be an
important factor influencing habitat decisions and the distri-
bution of animals, particularly for intertidal species (Palmer
1995). Ebb and flow of the tide cause large nearshore areas
to periodically switch between a terrestrial and marine habi-
tat (Pugh & Woodworth 2014) allowing for a productive
interface between the two ecosystems and often supporting
and attracting a diverse range of species (Ray 1991). The
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shallow marine habitats adjoining the intertidal zone may
consequently exhibit a temporally dynamic species composi-
tion (Robertson & Duke 1990). Submerged mangrove root
habitats are, for example, often used by juvenile fishes at
high tides as refuges from predators (Laegdsgaard & John-
son 2001; Nagelkerken et al. 2008), and juvenile elasmo-
branchs have been documented tracking the ebb and flow
of the tide to remain in shallow waters, presumably to avoid
predation (Davy et al. 2015; George et al. 2019; Guttridge
et al. 2012; Weideli et al. 2023). On the other hand, adult
reef sharks move from deeper lagoons onto shallower reef
flats at high tides to exploit abundant prey resources (Lea
et al. 2020).

Monthly changes in moonlight availability are a second
major factor that can influence the movements and behav-
iour of marine animals. The effects of moonlight availabil-
ity are believed to be most important in visual crepuscular
and nocturnal animals (Lima & Dill 1990). Reef sharks are
generally most active at twilight (Gruber et al. 1988; Ham-
merschlag et al. 2017; Nixon & Gruber 1988; Papastamatiou
et al. 2015; Whitney et al. 2007) and have a well-developed
visual system displaying a specialisation for scotopic (dim
light) vision (Cohen 1990; Cohen et al. 1977; Gruber 1967,
Lisney et al. 2012). Changes in moonlight availability may
therefore provide periodic foraging opportunities for sharks
and/or influence their capability to detect and evade preda-
tors—which is particularly important for mesopredatory
sharks (e.g. neonates and juveniles)—and subsequently
affect predator—prey dynamics. But whether moonlight avail-
ability affects mesopredatory sharks through variation in for-
aging success, variation in predation risk, or a combination
of both remains unclear (Penteriani et al. 2013).

To date, no studies have successfully delineated the
effects of the lunar phase to elucidate the mechanisms driv-
ing such patterns in sharks. The few studies that have inves-
tigated the effects of the lunar cycle on shark behaviour have
mainly focussed on large, adult, often pelagic shark spe-
cies (Hammerschlag et al. 2017), which frequently function
as top-level predators in their ecosystem. Lunar-mediated
effects on shark behaviour can, however, be highly specific
to certain regions and environments and may vary consider-
ably between and within species and across life stages (Ham-
merschlag et al. 2017; Spaet et al. 2020).

The island of Moorea in French Polynesia is located
within the South Pacific amphidromic system and only
experiences a very narrow tidal range (ca. 0.2 m; Hench
et al. 2008), and as such, the effects of lunar-induced tidal
variation are largely absent from the shallow reef flats
fringing Moorea. The minimal tidal variation at Moorea
therefore provides a unique opportunity to isolate the lunar
cycle’s effects from tidal influences. Moorea’s fringe reefs
serve as a nursery system for shark neonates (Mourier and
Planes 2013; Mourier et al. 2013b; Bouyoucos et al. 2020,
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2022), and the two most commonly encountered species
are blacktip reef (Carcharhinus melanopterus) and sick-
lefin lemon (Negaprion acutidens) sharks. Once widely
distributed throughout the coastal Indo-Pacific, both
species have experienced depletion or extirpation due to
inshore fisheries and habitat destruction and are consid-
ered vulnerable or endangered throughout the remainder
of their range (Simpfendorfer et al. 2020, 2023). The
increasing impacts of human disturbance—both direct
(e.g. coastal development, fisheries) and indirect (e.g.
climate change)—therefore highlight a pressing need to
address the effects of environmental factors, both natural
and anthropogenic, on sharks in an ever-changing climate.
Here, we aimed to determine how the lunar cycle affects
catch rates and foraging success of neonatal reef sharks
within a tide-independent context.

Methods

All shark capture and research protocols were approved
under arrétés n° 9524, n° 5129, and n° 11491 issued by
the Ministere de la Promotion des Langues, de la Culture,
de la Communication et de I’Environnement of the French
Polynesian government and by the James Cook University
Animal Ethics Committee (protocols A2089, A2394, and
A2769). Data were collected over seven consecutive partu-
rition seasons (from September to February 2016-2023) as
part of long-term, fisheries-independent surveys carried out
as a collaboration with the Centre de Recherches Insulaires
et Observatoire de I’Environnement (CRIOBE) and the
Physioshark Research Programme around Moorea, French
Polynesia (17° 30’ S, 149° 50’ W; Fig. 1).

Catch rates

Neonatal blacktip reef and sicklefin lemon sharks were
caught using a 50X 1.5 m gillnet with 5 cm mesh size
set perpendicular to shore. Gillnets were set at dusk from
~17h00 to 20h00 at ten sites (Apaura, Haapiti, Maharepa,
Paorea, Papetoai, Pihaena, Tiki, Vaiane, Vaiare, and Valo-
rie; Fig. 1) five days per week (i.e. Monday through Friday)
between September and February (from 2016 to 2023),
which represent the peak parturition months (Debaere et al.
2023; Mourier et al. 2013a). These sites, evenly spread
out around the 60-km coastline of Moorea, were randomly
assigned two fixed sampling slots per month at the start of
each season (e.g. Mourier and Planes 2013; Mourier et al.
2013b; Chin et al. 2015; Bouyoucos et al. 2020, 2022).

Pihaena Maharepa

Papetoai

Vaiare

Paorea

Vaiane Valorie

2 km

Fig. 1 The island of Moorea in French Polynesia and the ten study
sites where neonatal blacktip reef and sicklefin lemon sharks were
sampled. Pihaena, Maharepa, Vaiare, Paorea, and Valorie (solid cir-
cles) are considered monospecific blacktip reef shark parturition areas
(i.e. no neonatal sicklefin lemon sharks occur on the east coast of
Moorea). Half circles represent parturition areas where both species
co-oceur

Foraging success

A subset of blacktip reef sharks was examined to assess for-
aging success. To do this, gastric lavages were performed on
individual sharks by inserting an acrylic tube (2.5-3.8 cm
diameter, according to the shark’s size) into the shark’s
stomach via the mouth and through the oesophagus. The
tube and stomach were subsequently filled with seawater,
and then, the shark was turned upside down—while out of
the water—to flush the stomach. Stomach contents were
collected in a sieve, and a record was made of the number
of empty stomachs and stomachs containing prey for each
evening that data were collected during the 2016/2017 and
2020/2021 parturition seasons. Gastric lavages were not car-
ried out on neonatal sicklefin lemon sharks, as this proce-
dure appeared to be too stressful for the species. For a more
thorough description of the gastric lavage procedure, refer
to Weideli et al. (2019).

Data analyses

Dates of full moons were obtained from the National
Oceanic and Atmospheric Administration’s Centre for
Operational Oceanographic Products and Services website
(NOAA CO-OPS; https://tidesandcurrents.noaa.gov/astro
nomical.html). Obtained Greenwich mean times (GMT)
for full moons were converted to local times (GMT-10).
Days-since-full-moon (DFM) values (0 to 29, where 0
represents a day with full moon) were assigned to each
evening for which data were collected, similar to Grant
et al. (2009). DFM values were then converted to angles
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(in radians) by dividing by 29.5 (the period of a lunar
cycle in days) and multiplying by 2x. Due to the small
sample sizes of the stomach content data across the lunar
cycle, their DFM values were grouped into 8 bins (i.e. each
comprising 3.7 days, rather than 1 day).

The periodic nature of circular data separates it from
linear data, preventing the use of linear statistics to analyse
circular data. We therefore opted for a Bayesian embed-
ding approach to circular regression (i.e. linear predictors
with circular outcome). We implemented circular mixed-
effects models using the bpnme function from the bpn-
reg package (version 1.0.3; Cremers 2020) based on the
projected normal (Gaussian) distribution with a circular
outcome (i.e. phase difference in DFM). The first model
included the categorial variables ‘capture success’ (i.e.
unsuccessful vs. successful sampling event) and ‘species’
as fixed effects and ‘sampling location’ as random effect.
The second model included the presence of prey items
in the stomach (i.e. empty stomach vs. stomach contain-
ing prey) as fixed effect and ‘sampling location’ as ran-
dom effect. Because the circular mixed-effects models
employed in these analyses are based on the projected nor-
mal distribution, two model equations were provided for
the fixed and random effects (one for the sine [component
I] and one for the cosine [component II]; Cremers 2020;
Cremers et al. 2021), and the second model equation (i.e.
component II) was always set equal to that of component
I. Model fit was subsequently evaluated using the built-in
model selection criteria of the bpnme function. Models
were run using the Markov chain Monte Carlo (MCMC)
sampler for 10 000 iterations, with the first 300 samples
discarded (burn-in= 100, lag =3). Traceplots were con-
structed to assess the convergence of the MCMC chains.
Additionally, the total number of captured neonatal black-
tip reef and sicklefin lemon sharks were compared across
the lunar cycle to complement and verify our binary mod-
elling approach. All statistical analyses were carried out in
R (version 2023.06.0 +421; RStudio Team 2020; R Core
Team 2020).

Note that no discrimination was made between sex of
juveniles because blacktip reef and sicklefin lemon sharks
do not sexually mature until they reach a total body length
of 105 or 220 cm, respectively (Chin et al. 2013b; Mourier
et al. 2013a, b; Stevens 1984). Furthermore, previous stud-
ies found no significant differences in body length and
first-year growth between male and female neonatal black-
tip reef and sicklefin lemon sharks (Hodgkiss et al. 2017;
Papastamatiou et al. 2009; Stevens 1984). Additionally, no
data were collected on days with extreme weather condi-
tions (i.e. storms, strong winds, heavy rainfall), exclud-
ing potential effects caused by such weather events on the
catch rates or foraging success of the sharks.
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Results

A total of 1269 neonatal blacktip reef sharks were sampled
over 804 sampling events, with 60.5% of the sampling events
being successful. In parallel, 804 neonatal sicklefin lemon
sharks were sampled over 550 sampling events, with 37.5%
of the sampling events being successful. Note that sampling
events did not target specific species, but sampling events
that occurred in monospecific parturition areas (neonatal
sicklefin lemon sharks are absent from the east coast of
Moorea; i.e. Maharepa, Paorea, Pihaena, Vaiare, Valorie;
Fig. 1) were omitted from the total count for the species
absent in that area. Of the 1269 neonatal blacktip reef sharks
sampled, 191 neonates had their stomachs flushed, of which
115 (60.2%) had empty stomachs and 76 (39.8%) had stom-
achs containing prey. While none of the prey items were
identifiable to the species level, of the stomachs containing
prey, 58 (76.3%) contained teleost prey items and 18 (23.7%)
contained traces of crustacean prey or unidentifiable prey
items.

Catch rates

No effect of lunar phase was observed on the catch rates of
the neonatal reef sharks. Highest posterior density (HPD)
intervals for the linear regression coefficients for the fixed-
effect predictor ‘capture success’ (i.e. unsuccessful being
zero sharks caught, and successful meaning at least one
shark caught during a given sampling event) show con-
siderable overlap among categories (81% and 57% overlap
of HPD intervals for C. melanopterus and N. acutidens,
respectively), indicating a lack of evidence to reject the null
hypothesis that the circular means do not differ significantly
(Supplementary Table 1; Cremers et al. 2018, 2021). Note
that the posterior modes of the random intercept variance
on the circle are rather high, indicating that the sampling
locations may differ considerably in their individual inter-
cept estimates (Supplementary Table 1; Cremers & Klugkist
2018). Additionally, the total number of neonates caught
appears to be evenly distributed across the lunar cycle. Esti-
mates for the Bayesian 95% HPD intervals for the circular
regression coefficients, illustrated in Fig. 2, further corrobo-
rate the lack of an effect of the fixed-effect predictor on the
average phase difference.

Foraging success

Similarly, as judged by stomach content, no effect of lunar
phase was observed on the foraging success of neonatal
blacktip reef sharks. HPD intervals for the linear regres-
sion coefficients again show considerable overlap between
categories (40% overlap of HPD intervals), indicating that
there is not enough evidence to reject the null hypothesis
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Fig. 2 Rose diagrams with
highest posterior density (HPD)
intervals (arcs) showing the
frequency of sampling events
during which no sharks were
caught (unseccesful; red, thin
bins) and during which at least
one shark was caught (success-
ful; blue, wide bins) across

the lunar cycle for neonatal (a)
blacktip reef and (a) sicklefin
lemon sharks, and the total
number of neonatal (c) blacktip
reef and (d) sicklefin lemon
sharks caught across the lunar
cycle. Note the broad and over-
lapping HPD intervals, suggest-
ing no effect of the fixed-effect
predictor on the average phase
difference. Clockwise from top:
full moon, third quarter, new
moon, first quarter. Sample
sizes: a unsuccessful n=318,
successful n=486; b unsuccess-
ful n=2344, successful n=206;
cn=1269; d n=804

(Supplementary Table 2). The posterior modes of the ran-
dom intercept variance on the circle are low, and the sam-
pling locations therefore do not appear to differ consider-
ably in their individual intercept estimates (Supplementary
Table 2). Estimates for the Bayesian 95% HPD intervals
for the circular regression coefficients, illustrated in Fig. 3,
further corroborate the lack of an effect of the fixed-effect
predictor on the average phase difference.

Discussion

We compared catch rates of neonatal blacktip reef and sick-
lefin lemon sharks in ten distinct parturition sites throughout
Moorea’s nursery system and stomach content as a proxy for
foraging success in the blacktip reef shark neonates across
the lunar cycle. Throughout the 7 years of data collection
(2016-2023), lunar phase did not influence the catch rates of
the neonatal reef shark or foraging success of blacktip reef
shark neonates. A lunar influence on behavioural decisions
made by mesopredatory reef sharks can be expected when
the effects of the moon cycle—primarily tidal variation and

moonlight availability—provide periodic advantages (e.g.
foraging opportunities) or disadvantages (e.g. predation
risk), but we did not find any evidence for lunar-mediated
changes in catch rates or foraging success in this study. Note
that our analyses were based on a substantial dataset col-
lected over seven consecutive parturition seasons, providing
compelling negative results rather than these findings being
the consequence of a lack of power. Several reasons can be
proposed for the lack of a lunar-induced effect on catch rates
and foraging success in neonatal reef sharks reported here:
(1) the narrow tidal variation around Moorea, (2) the small
home ranges and continuous swimming patterns of these
neonatal sharks, and (3) their lack of knowledge and effi-
ciency to exploit periodic foraging opportunities influenced
by changes in moonlight availability.

A first explanation may be the location of Moorea within
the South Pacific amphidromic system, causing the island to
experience a narrow tidal range of about 0.2 m (Hench et al.
2008). Tidal height can be an important factor influencing
the behaviour and distribution of coastal shark species (Ack-
erman et al. 2000; Carlisle & Starr 2010; George et al. 2019;
Guttridge et al. 2012; Lea et al. 2020; Medved & Marshall
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Fig. 3 Rose diagrams with highest posterior density (HPD) inter-
vals (arcs) showing the number of neonatal blacktip reef sharks with
an empty stomach (red, thin bins) or stomach containing prey items
(blue, wide bins) across the lunar cycle. Note the broad and overlap-
ping HPD intervals, suggesting no effect of the fixed-effect predic-
tor on the average phase difference. Clockwise from top: full moon,
third quarter, new moon, first quarter. Sample sizes: empty stomachs
n=115, stomachs containing prey n=76

1983; Wetherbee et al. 2007). Indeed, high tides may allow
for large-bodied sharks to move from deeper lagoons onto
shallower reef flats to exploit the abundant prey resources
on the reefs (Lea et al. 2020). To avoid predation, meso-
predatory sharks (e.g. neonates) should track the tidal flow
to remain in shallow waters that are relatively inaccessible
to larger predators or that can provide a propulsive advan-
tage to the smaller neonates, optimising escape performance,
as larger predators face increased drag (Trujillo et al., in
review). Indeed, juvenile blacktip reef and Atlantic lemon
sharks (N. brevirostris) at Orpheus Island (along the north-
east coast of Australia) and Bimini (in the Bahamas), respec-
tively, exhibit synchronised movements with the tidal cycle,
moving into mangrove root habitats at higher tides which
also appears to correspond with an increased presence of
larger sharks in the surrounding area (George et al. 2019;
Guttridge et al. 2012). The absence of substantial variation
in tidal height at Moorea suggests that these neonatal reef
sharks do not exhibit the movements observed in such areas
with a large tidal variation and can explain the lack of a
tidal-induced and, hence, lunar-mediated effect on catch
rates and foraging behaviour observed in this system.

Reef shark neonates and juveniles inhabit shallow nurs-
ery areas that protect them from predation by larger (adult)
sharks (Heithaus 2007; Heupel et al. 2007). However, this
also means that the neonatal sharks are to some extent con-
fined to these small areas over the reef flats. While larger
reef sharks typically live on the outer reef and can move in
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and out of the reefs via lagoons, neonatal reef sharks stay
on the inner reef during their first months to years after birth
(Weideli et al. 2019). Furthermore, since blacktip reef and
sicklefin lemon sharks are primarily ram ventilators (i.e. they
swim to force oxygen-rich water over their gills), they likely
exhibit continuous patterns of activity. Thus, considering the
small home ranges of these sharks (Bouyoucos et al. 2020),
their continuous swimming patterns, and the negligible tidal
variation, the probability of capturing neonates at Moorea
can be expected to remain somewhat constant, irrespec-
tive of lunar phase. In contrast, adult reef sharks can move
throughout the deeper parts of the fore reef and lagoons
(Compagno 1984; Gruber et al. 1988; Mourier et al. 2013b)
or even disperse to other reefs (Chin et al. 2013a; Mour-
ier et al. 2013a) and, hence, are not confined to the small
home ranges observed in neonates (Cortes & Gruber, 1990;
Morrissey & Gruber 1993). In this case, lunar phase can
potentially influence foraging behaviour and decisions of the
adult sharks, where the adults move closer to the fringe reefs
where prey may be more abundant (Papastamatiou et al.
2009) in anticipation of lunar-mediated foraging opportuni-
ties. Indeed, several studies have reported predation by adult
reef sharks on repetitive and predictable spawning aggrega-
tions that occur annually around full moon (Mourier et al.
2016; Weideli et al. 2015). Additionally, adult blacktip reef
and sicklefin lemon sharks often appear to be patrolling reef
crests or the edge of the lagoons in anticipation of foraging
opportunities (Lea et al. 2020; Papastamatiou et al. 2009).
Several studies have proposed and demonstrated an
improvement in foraging abilities with maturation and
experience (Ciaccio 2008; Lowe et al. 1996; Newman et al.
2012), providing a third, more general explanation. The
absence of lunar-induced effects on the foraging activity
of neonatal sharks may be related to the neonates’ lack of
knowledge and efficiency to exploit such periodic foraging
opportunities. In their rush to find food, neonatal sharks can
be expected to search for, and try to capture prey at relatively
high rates. Due to their naivety, they may not yet know the
most efficient ways to forage and will have to learn through
trial and error. Weideli et al. (2019) reported that neonatal
blacktip reef sharks around Moorea acquire their foraging
habits relatively slowly given that less than half of the neo-
nates had prey in their stomachs. Similar results were found
for other shark species (Barry et al. 2008; Bush 2003; Dun-
can et al., 2006; Hussey et al. 2010); although, this may be
region-specific. Viviparous shark neonates receive maternal
energy reserves in the form of enlarged livers that sustain
them during the first weeks to months of their lives (Debaere
et al. 2023; Hussey et al. 2010). It is therefore possible that
for these neonatal sharks, the lunar cycle is not an important
predictor of foraging success because the neonates do not
yet need to feed and tend to be predominantly opportunis-
tic foragers (Newman et al. 2012). We therefore encourage
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future studies to include older juvenile (> 1 y) and (sub-)
adult sharks to elaborate on the effects of the lunar cycle on
the foraging behaviour of reef sharks.

It is important to note that the state of digestion of the
prey items found in the gastric lavage samples was not con-
sidered (i.e. assigned DFM values may differ slightly from
the precise timing of successful foraging). However, the rate
of digestion in juvenile reef sharks is relatively quick (e.g.
Cortés & Gruber 1992; Jackson et al. 1987; Medved 1985;
Meyer & Holland, 2012) and it therefore seems reasonable
to assume that this would result in minimal changes of the
circular outcome and subsequent shifts in highest posterior
density intervals. Juvenile Atlantic lemon sharks (V. breviro-
stris) evacuate teleost prey within 40 h and juvenile sandbar
sharks (C. plumbeus) within 90 h, whereas crustacean prey,
with evacuation times varying by exoskeleton thickness,
are digested more quickly (Cortés & Gruber 1992; Jack-
son et al. 1987; Medved 1985). Furthermore, mean summer
water temperatures at the sampling locations around Moorea
range from 25 to 35 °C. These high ambient water tempera-
tures increase routine metabolic rate of elasmobranch fishes
and speed up digestion and gastric emptying rates (Brett &
Groves. 1979; Bush & Holland 2002; Cortés & Gruber 1992;
Nelson & Ross 1995). Therefore, it is reasonable to conclude
that gastric evacuation in neonatal blacktip reef and sicklefin
lemon sharks around Moorea occurs in under two days, a
duration unlikely to substantially affect these results. How-
ever, this could also mean that sharks with empty stomachs
could have successfully fed several days before being caught.
Indeed, active foraging bouts are often followed by periods
of fasting, but when the sharks’ stomachs are nearly empty,
foraging activity again increases (Wetherbee et al. 1990).
Sharks with empty stomachs can therefore be expected
to be actively searching for prey. Consequently, the swift
gastric evacuation observed suggests that the feeding data,
despite not accounting for digestion states, reliably reflects
the sharks’ foraging habits.

In conclusion, no lunar influence was observed on the
catch rates and foraging success of neonatal blacktip reef
sharks and the catch rates of sicklefin lemon sharks in
Moorea’s nursery system. The lack of substantial variation in
tidal height at Moorea suggests that the neonates do not need
to exhibit the synchronised movement patterns with the tidal
cycle often observed in other populations to avoid predation
in areas with a large tidal variation. Considering the small
home ranges of the neonates, their continuous swimming
patterns, and the negligible tidal variation, the probability of
capturing neonates at Moorea can also be expected to remain
somewhat constant, irrespective of lunar phase. Finally, the
lack of any effect of moon phase may be due to the neonates’
lack of knowledge and efficiency to exploit periodic foraging
opportunities. In view of the current threats that neonatal
blacktip reef and sicklefin lemon sharks face worldwide and

the ever-changing environment they inhabit, unravelling the
effects of environmental factors, such as celestial latitude of
the moon, on the foraging strategies and decisions of reef
sharks will be particularly worthwhile in the face of global
change.
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