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Reduced water quality, in particular increases in suspended sediments, has
been linked to declines in fish abundance on coral reefs. Changes in gill struc-
ture induced by suspended sediments have been hypothesized to impair gill
function and may provide a mechanistic basis for the observed declines; yet,
evidence for this is lacking. We exposed juveniles of three reef fish species
(Amphiprion melanopus, Amphiprion percula and Acanthochromis polyacanthus)
to suspended sediments (0-180 mg 1™ ') for 7 days and examined changes in
gill structure and metabolic performance (i.e. oxygen consumption). Exposure
to suspended sediments led to shorter gill lamellae in A. melanopus and
A. polyacanthus and reduced oxygen diffusion distances in all three species.
While A. melanopus exhibited impaired oxygen uptake after suspended sedi-
ment exposure, i.e. decreased maximum and increased resting oxygen
consumption rates resulting in decreased aerobic scope, the oxygen consump-
tion rates of the other two species remained unaffected. These findings imply
that species sensitive to changes in gill structure such as A. melanopus may
decline in abundance as reefs become more turbid, whereas species that are
able to maintain metabolic performance despite suspended sediment
exposure, such as A. polyacanthus or A. percula, may be able to persist or gain
a competitive advantage.

1. Introduction

Declining water quality is one of the leading causes of aquatic ecosystem degra-
dation globally [1,2]. In particular, the input and resuspension of sediments
are having a dramatic effect on both sessile and mobile organisms [3]. Coastal
development, agriculture, overgrazing, mining, removal of riparian vegetation,
dredging and shipping have increased suspended sediments in coastal waters
over the past decades [1,4,5]. Continued population growth in coastal areas,
especially in the tropics [6], is likely to lead to further increases in suspended
sediments. Increases in suspended sediments have already led to biodiversity
loss and fundamental changes in benthic and fish assemblages on coral reefs
[7-11]; however, the mechanistic basis for these declines is not fully understood.

Declining water quality has been associated with reductions in abundance and /
or diversity of reef fishes on coastal reefs (e.g. Great Barrier Reef [9,10], Caribbean
[11] and Pacific Islands [12,13]). It is not clear, however, if these changes in fish
assemblages are the result of the direct effects of suspended sediments on fish be-
haviour or physiology, and/or the indirect effects of suspended sediments that
manifest through the degradation of benthic habitats. The negative effects of sedi-
ments on the abundance and composition of corals are well established [7,14], and
numerous studies have documented declines in fish assemblages following coral
loss [15,16]. However, the indirect effects of sediment-induced coral loss may be
compounded by any direct impacts of suspended sediments on fishes [3,17]. For
example, suspended sediments have been shown to interfere with visual acuity
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and olfaction in some coral reef fishes, thereby affecting larval
settlement [18,19] and prey capture [20-22]. Suspended
sediments, however, may also have important impacts on phys-
iological processes, such as respiration, that could lead to
negative effects at the level of performance and fitness.

Most fish species rely on their gills to extract oxygen from
water [23], and suspended sediments and other pollutants
have been hypothesized to interfere with this process [24].
Several studies have shown that suspended sediments and
other pollutants can irritate and damage gill tissues, leading
to changes in gill structure [25-28]. Specifically, exposure to
suspended sediments has been shown to reduce the length of
gill lamellae, thereby reducing gill surface area, and to damage
the gill epithelium [29,30], which is the primary site for oxygen
uptake in most fishes [31]. To repair tissue damage and to
reduce the impact of pollutants, gills often secrete mucous and
grow additional cell layers on the lamellae (referred to as hyper-
plasia), which increase the thickness of the gill epithelium and
oxygen diffusion distances [32,33]. Reductions in gill surface
area and increases in oxygen diffusion distances are assumed
to decrease the efficiency of gas exchange and reduce the
capacity of the gills for oxygen uptake [34,35]. Indeed, some
species are known to undergo extensive modifications in gill sur-
face area and oxygen diffusion distances to regulate ion- and
oxygen transport across the gills in response to changes in temp-
erature, hypoxia and air exposure [36—-41]. However, little is
known as to whether changes in gill structure induced by pollu-
tants such as suspended sediments directly affect gill function
and the metabolic performance of fish (but see [28]).

The capacity to perform vital aerobic activities is tied to
the capacity of the gills for oxygen uptake [42,43]. For example,
the maximum rate of oxygen uptake of individuals (i.e. MOsmax)
has been correlated with various activities linked to fitness and
survival in fish, including locomotion and competitive ability
[43,44]. Gill damage induced by suspended sediments may
reduce the capacity for oxygen uptake and limit oxygen delivery
to tissues, especially during activities requiring high levels of
oxygen [45], thus compromising fish performance and ulti-
mately reducing fitness and survival of fish living on turbid
reefs. The potential link between gill structure, metabolic per-
formance and individual fitness may be an important—albeit
understudied—driver of the observed changes in fish assem-
blages with declining water quality [26,28,46]. Determining
the extent to which structural gill changes induced by suspended
sediments affect the metabolic performance of individual
species is critical to understand current and future changes in
coastal fish assemblages as water quality decreases.

The aim of this study was to investigate whether changes in
gill structure resulting from exposure to suspended sediments
will compromise gill function and metabolic performance of
juvenile coral reef fishes, thereby providing a mechanistic link
between declining water quality and fish health. To do so, we
examined the effects of a range of ecologically relevant sus-
pended sediment concentrations on the gill morphology and
oxygen consumption rates of three common damselfish species
using histology and intermittent-flow respirometry, respect-
ively. The suspended sediment concentrations used reflect
those currently experienced on inshore reefs of the Great Barrier
Reef during resuspension events such as currents, waves and
flood plumes [47 48]. These suspended sediment concentrations
are likely to become more frequent in the future as population
growth, coastal development and associated terrestrial run-off
in tropical coastal areas rapidly increase [2,6].

2. Material and methods

(a) Experimental protocol

Larvae of Amphiprion melanopus (cinnamon clownfish), Amphiprion
percula (false orange clownfish) and Acanthochromis polyacanthus
(spiny chromis) were sourced from captive breeding pairs between
January and May 2016 and maintained until experimentation (see
electronic supplementary material for a detailed description). At
30 days after hatching, juvenile A. melanopus and A. polyacanthus
were randomly assigned to one of five suspended sediment concen-
trations (i.e. 0,45, 90, 135 or 180 mg 1~ ") corresponding to turbidity
levels of 0.5+ 0.5, 7.0 + 2.7, 142 + 3.0, 21.3 + 3.4 and 30.1 +£3.7
nephelometric turbidity units (NTU), respectively. Juvenile A. per-
cula were randomly allocated to one of three suspended sediment
concentrations (i.e. 0, 135 or 180 mg 1™Y due to the limited
number of larvae available. Water temperature was maintained at
28.5 + 0.5°C for all fish. For each of the three species, four to six repli-
cate aquaria were established for each of the suspended sediment
concentrations, and five randomly selected individuals were
placed in each aquarium. Fish were maintained in the experimental
aquaria for 7 days and fed with flakes NRD 0.5-0.8 mm (Pro Aqua
Pty Ltd) twice daily. Sediments were resuspended in external
sumps and delivered to aquaria via submersible pumps (electro-
nic supplementary material, figure S1 for further information).
Australian bentonite, a clay with a small particle size range (less
than 63 um) and representative of sediments found in suspension
on the Great Barrier Reef [49], was used as the sediment. The
selected suspended sediment concentrations, turbidity levels and
length of exposure to suspended sediments (i.e. 7 days) represent
conditions that are currently observed on inshore reefs of the
Great Barrier Reef during regular resuspension events (e.g. waves
and currents) and periodic events, such as flood plumes [47,48,50].

(b) Gill histology

Following respirometry trials to measure oxygen consumption
rates (see below), 12 individuals (out of 20 exposed individuals)
for each species and sediment treatment were randomly selec-
ted for histological analyses. These fish were euthanized in an
ice-water slurry, fixed in Bouin’s solution for 24-48 h and then
transferred to 70% ethanol. Fish were then serially dehydrated
(Shandon Southern Duplex Processor BS5), embedded in paraffin
wax blocks (Shandon Histocentre 3, Thermo Electron Corporation)
and sectioned (5 wm thick) longitudinally with a microtome.
Sections were stained with Mayer’s haematoxylin and eosin to
allow the primary gill filaments, secondary lamellae, gill epi-
thelium and supporting pillar cell system to be distinguished
visually (electronic supplementary material, figure S2). Lamellae
were photographed (Olympus DP12 Microscope Digital Camera
System) at 400 x magnification, and 15 randomly selected lamellae
per fish were analysed in Image] (v. 1.48, National Institute of
Health, Rockville, MD, USA).

Morphological features of the lamellae (i.e. total and functional
lamellar length, filament thickness and thickness of the lamellar
epithelium/oxygen diffusion distance) were measured following
[26] (electronic supplementary material, figure S3a—c). In brief,
the total length of lamellae was measured from the tip of the lamel-
lae to the base (including the filament epithelium), and the
functional length from the tip to the edge of the filament epi-
thelium (electronic supplementary material, figure S3a). The
thickness of the filament epithelium was measured in between
two lamellae (electronic supplementary material, figure S3a). The
total area of the lamellae and the area of the pillar cell system of
the functional lamellar length were measured, and the difference
between the two was divided by twice the functional length to
determine the oxygen diffusion distance (electronic supplemen-
tary material, figure S3c) [26]. Note that the oxygen diffusion
distance is different from the thickness of the lamellar epithelium,
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as it includes non-tissue space caused by epithelial lifting (i.e.
detachment of the epithelium from the pillar cell system, [51]).
All filaments were analysed blindly with respect to treatments.

(c) Oxygen consumption rates

Oxygen consumption rates (MO,) of individuals were determined
using intermittent-flow respirometry [52]. Prior to respirometry,
each fish was fasted for 24 h to ensure a post-absorptive state
[53]. Then, each individual fish was manually chased in a circular
container (60 cm diameter, 10 cm water depth) until exhaustion
[54]. Individuals were deemed exhausted when they no longer dis-
played burst swimming, which always occurred within 2—3 min.
This method assumes that maximum oxygen uptake rates are
achieved while fish recover from exhaustive anaerobic exercise
[55]. On exhaustion, fish were placed immediately into their
respective respirometry chambers (15.7ml volume including
tubing) and left to recover for 3 h (see electronic supplementary
material for a detailed description) while oxygen levels were con-
tinuously recorded. While adult fish are usually monitored over
24 h [56], smaller fish recover much faster from exhaustive exercise
and are commonly measured for 2—3 h only to minimize stress and
risk of starvation (e.g. [57,58]). Flush pumps supplied each
chamber with (clear) aerated, UV-filtered seawater from the sur-
rounding water bath every 10 min for 2 min, thus preventing
oxygen levels from falling below 90% air saturation. Recircula-
tion pumps ensured homogeneous oxygen tensions throughout
chambers [56]. Background microbial respiration in empty
chambers was measured before and after each trial [56]. After the
trial, fish were euthanized in an ice-water slurry and blotted dry,
and fish standard length (to the nearest mm) and mass (to the near-
est 0.001 g) were recorded. Fish length and mass (mean =+ s.e.),
respectively, were as follows: A. melanopus, 13.5 + 0.3 mm and
98 + 6 mg; A. polyacanthus, 17.6 + 0.3 mm and 174 + 8 mg;
A. percula, 19.1 + 0.3 mm and 153 + 6 mg.

Oxygen consumption rates (mg O, h™') during closed respiro-
metry phases (i.e. non-flushing) were calculated using linear
least squares regression in Labchart v. 6.1.3 (ADinstruments,
Dunedin, New Zealand). Background microbial respiration was
subtracted from the total respiration in chambers to derive the
oxygen consumption rates of fish [56]. The highest value of
oxygen consumption rates (30s intervals) after exercise was
taken as the maximum oxygen consumption rate and usually
occurred during the first measurement cycle. Resting oxygen con-
sumption rate was estimated as the mean of the lowest 10% of all
values, excluding outliers below or above 2 s.d. [56]. Aerobic
scope was calculated as the difference between the maximum
and resting oxygen consumption rate (see [57]).

(d) Statistical analyses

All analyses were performed in R (v. 3.3.2, R Core Team 2013).
Linear and generalized linear mixed models (Ime4 package, [59])
were used to analyse the effects of suspended sediment concen-
trations on gill morphology. Total and functional lamellar length
as well as the oxygen diffusion distance were used as dependent
variables, sediment treatment was used as a fixed effect and the
standard length of fish was used as a covariate, allowing for inter-
actions between sediment treatment and standard length. The
standard length was mean-centred to help with the interpretation
of model intercepts. Fish identity was included as a random factor
to account for repeated measurements per fish. Assumptions of
normality and homogeneity of residuals were visually assessed
with Q-Q plots and frequency distributions. Parameters were esti-
mated using restricted maximume-likelihood, and P-values were
generated using the Kenward-Rogers approximation [60]. If
residuals of models did not meet assumptions, generalized linear
mixed models were used with a gamma distribution and log-
link function. Residuals were assessed for homogeneity and

checked for overdispersion. Parameters were estimated using the
Laplace approximation, and P-values were generated using the
Wald Z-test [60]. Interactions between the fixed factor and the cov-
ariate were dropped when not significant. The effects of suspended
sediments on oxygen consumption rates were analysed using
linear or generalized linear models as described above. Maximum
and resting oxygen consumption rates and aerobic scope (in
mg O, h™ ') were dependent variables, sediment treatment was a
fixed effect and body mass was a covariate. Clutch identity was
included as a random effect with random intercepts.

To display results visually, intercepts and standard errors
produced by the model (i.e. after correcting for fish size or
mass) were plotted for each treatment. Parameters on log-scales
were transformed to facilitate visual interpretation.

3. Results

(a) Gill structure
Exposure to suspended sediments significantly altered the
gill structure of all three species investigated, with the extent
of the changes varying among species and suspended sedi-
ment concentrations. Total lamellar length (see electronic
supplementary material) and functional length of the lamellae
of both A. melanopus and A. polyacanthus were shorter following
exposure to sediments, while no changes were observed for
A. percula. For A. melanopus, the functional lamellar length
was on average between 20.5% and 29.6% shorter after
exposure to any of the four suspended sediment concentra-
tions when compared with gills from control fish (45 mg It
t=—2.02, p=0.0436; 90mg 1% t=-225 p=0.0245;
135mg1 " t=3.62, p=0.0002; 180mgl " t=—3.04, p=
0.002; figure 1a; electronic supplementary material, table S1).
For A. polyacanthus, the functional lamellar length was on aver-
age between 21.7% and 30.6% shorter after exposure to three of
the four suspended sediment concentrations when compared
with control fish @5mgl ' t=—-326, p=0.0011;
135mgl " t= —3.07, p=0.0021; 180 mg 1 ": t = —2.20, p =
0.027; figure 1a; electronic supplementary material, table S2).
All three species exhibited significant reductions in
oxygen diffusion distances on suspended sediment after
exposure (figure 1b; electronic supplementary material, tables
S1-S3). In A. melanopus, the oxygen diffusion distance was
reduced by 24.1% and 28.8%, respectively, in fish exposed to
the two highest suspended sediment concentrations
(135mgl " t=—196, p=0.049; 180mgl ": t= —228, p=
0.02; figure 1b; electronic supplementary material, table S1).
Similarly, the oxygen diffusion distance was between 24.9%
and 28.8% shorter in A. polyacanthus exposed to three of the
four suspended sediment concentrations when compared with
control fish (45 mg I = -268, p=0.007;, 135mg It
t=—2.69,p=0.007; 180 mg 1"ht= —220, p = 0.02; figure 1b;
electronic supplementary material, table S2). In A. percula,
reductions in oxygen diffusion distance by as much as 18.3%
were evident in fish from both examined suspended sediment
treatments (135 mg 'L t=-212, p=0.04, 180 mg It
t=—325 p=0.003; figure 1b; electronic supplementary
material, table S3).

(b) Oxygen consumption rates

Despite the observed changes in gill morphology in all three
species of fish exposed to suspended sediments, oxygen con-
sumption rates were only affected in one of the three species
(A. melanopus). Specifically, maximum oxygen consumption
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Figure 1. Effects of suspended sediments on (a) functional lamellar
length and (b) oxygen diffusion distance in A. melanopus (filled circles),
A. polyacanthus (open circles) and A. percula (half-filled circles). Circles and
bars represent intercepts and standard errors, respectively, as estimated by
general and linear mixed models after accounting for fish length. Asterisks
indicate significant differences when compared with the control group at
a < 0.05. (Online version in colour.)

rates were reduced by as much as 17.5% following exposure to
the two highest suspended sediment concentrations relative to
control fish (135mgl™": t=—239, p=0.016; 180mgl "
t= —2.01, p=0.044), but no changes were evident in fish
exposed to 45 or 90 mg 1! (figure 2a; electronic supplementary
material, table S4). Resting oxygen consumption rates in
A. melanopus were elevated on average by 36.3-64.3% for
three of the four suspended sediment concentrations when
compared with control fish (45mg1™": t=2.92, p=0.004;
90 mg 1" +=3.00, p=10.003; 180 mg 1~ ": t =261, p=0.011;
figure 24; electronic supplementary material, table S4). Reflect-
ing changes in maximum and resting oxygen consumption
rates, aerobic scope was reduced by as much as 39.3% in fish
on exposure to all suspended sediment concentrations when
compared with control fish (45 mg1™ " t= —2.42, p=0.015;
90 mgl " t=—2.60, p=0.009; 135mgl~": t=—385 p=
0.001; 180 mg 1% = —231, p=0.020; figure 2b; electro-
nic supplementary material, table S4). No effects on
maximum or resting oxygen consumption rates or aerobic
scope were detected for A. polyacanthus or A. percula exposed
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Figure 2. Effects of suspended sediments on oxygen consumption of
A. melanopus. (a) Maximum oxygen consumption rates (M05y,0y filled circles)
and resting oxygen consumption rates (M0, open circles), and (b) aerobic
scope. Circles and bars represent intercepts and standard errors, respectively,
as estimated by general and linear mixed models after accounting for fish
mass. Asterisks indicate significant differences when compared with the
control group at v << 0.05. (Online version in colour.)

to suspended sediments (electronic supplementary material,
tables S5 and S6).

To further explore the connection between oxygen
consumption rates and changes in gill morphology, we ana-
lysed the relationship between aerobic scope and the
squared mean functional lamellar length (as a proxy for gill
surface area) of A. melanopus using linear regressions. Separ-
ate analyses were used for A. melanopus exposed to 0and
180 mg 1! suspended sediments. While there was a signifi-
cant correlation between aerobic scope and squared mean
functional lamellar length in A. melanopus juveniles exposed
to control conditions (R? = 0.34, Fi113=6.82, p=0.02), these
two variables were not significantly correlated in juveniles
exposed to 180mgl ' suspended sediments (R*=0.00,
F15=0.03; p=0.85).

4. Discussion

Changes in the gill structure of fishes exposed to elevated sus-
pended sediment concentrations have been hypothesized to
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reduce metabolic performance and thereby lead to declines in
the diversity and abundance of fish assemblages on turbid
reefs [26,28,46]. Our results confirm that short-term exposure
to suspended sediments led to changes in the gill structure of
all three examined species; however, these morphological
changes only translated to impaired metabolic performance
(i.e. oxygen consumption rates) in one species (A. melanopus).
These findings imply that species that are sensitive to changes
in gill structure such as A. melanopus may decline in abundance
as reefs become more turbid, whereas species that are able to
maintain metabolic performance despite suspended sediment
exposure, such as Acanthochromis polyacanthus or A. percula,
may be able to persist or gain a competitive advantage. Our
results highlight that suspended sediment can have direct
physiological consequences for some coral reef fish and pro-
vide further insights into how reduced water quality can
shape coral reef communities.

The interspecific variation in the effect of suspended sedi-
ment exposure on oxygen uptake rates observed in this study
may be related to differences in environmental tolerances
among species. Following suspended sediment exposure,
A. melanopus exhibited increases in resting oxygen consump-
tion rates and reductions in both maximum oxygen
consumption rates and aerobic scope. By contrast, the conge-
ner A. percula and confamilial A. polyacanthus both
maintained oxygen uptake rates despite similar changes in
gill structure. The widespread distribution pattern of
A. polyacanthus spanning both turbid inshore and clear off-
shore reefs may explain the high tolerance of this species to
suspended sediments [61]. The differential responses of the
closely related A. percula and A. melanopus, however, are
counter to expectations based on their current distributions.
Although the current distribution of A. melanopus includes
turbid reefs [62], this species was the most heavily affected
by suspended sediments in the present study. By contrast,
the species least affected by suspended sediments, A. percula,
is typically rare in turbid environments [61], and the effects of
suspended sediments on gills may hence not influence the
distribution of this species. Understanding which species
are sensitive versus those that are tolerant to changes in sus-
pended sediment concentrations will be critical for the
effective conservation of inshore coral reefs.

Our results document that juvenile A. melanopus exposed
to elevated suspended sediment concentrations had a reduced
capacity for oxygen uptake, as indicated by reductions in
maximum oxygen consumption rates (i.e. MOymay). This
may have been the result of gill damage, leading to the
observed reductions in lamellar length and thus a reduction
in gill surface area available for gas exchange. Aerobic scope
was positively correlated with the squared functional lamellar
length (as a proxy for gill surface area) in control fish, sup-
porting the idea that the reduction in MOsmax may have
been caused by gill damage. Interestingly, there was no signifi-
cant relationship between aerobic scope and functional
lamellar length in fish after suspended sediment exposure.
The reasons for this are currently not known. However, it is
important to note that A. melanopus also showed reductions
in oxygen diffusion distances in response to suspended sedi-
ments. This would have probably enhanced oxygen uptake
efficiency, i.e. reduced oxygen diffusion distances may have
partly compensated for reductions in gill surface area [35]
and may have weakened the relationship between aerobic
scope and functional lamellar length. An alternative

hypothesis for the drivers of the observed reduction in [ 5 |

MOsmax could be that suspended sediment exposure may
have elicited a stress response, which may have influenced
MOs,0x. However, there is limited information available on
the effects of stress on MOspax. Considering the multiple stres-
sors that fish experience on degraded reefs, this would be an
interesting avenue for further research. Regardless of the
underlying mechanisms, a reduced MOy, suggests that
oxygen delivery to tissues may be insufficient during activities
with elevated oxygen demand, such as during swimming
[43,63].

Individuals exposed to suspended sediments exhibited
increased oxygen consumption rates at rest (i.e. MOyest),
which is commonly observed in fish exposed to poor water
quality (e.g. [64—-66]). This finding indicates that inhabiting
areas with elevated suspended sediments incurs an energetic
cost. The increase in MOayeqt may have been the result of a
stress response, behavioural and physiological acclimation
to suspended sediments, tissue repair at the gills, an
enhanced immune response and/or inefficient oxygen
uptake [67,68]. Furthermore, the reduction in aerobic scope
of A. melanopus exposed to suspended sediments suggests a
compromised capacity to perform vital aerobic activities,
such as growth, development and locomotion [69]. A
reduction in aerobic scope may be especially problematic in
juvenile fish, which exhibit exceptionally high growth rates
[70] but low survival rates [71]. Factors that reduce growth
or survival during early life-history stages can have strong
effects on recruitment patterns [72,73]. While A. melanopus
is common on turbid reefs today [64], our findings suggest
that this species could decline in abundance as suspended
sediments continue to increase in the future, or may shift to
alternative/less suitable habitats (e.g. reefs further offshore).
Any potential habitat shifts by A. melanopus are likely to
increase competition among anemone fish species for host
anemones in these habitats and (depending on the outcomes)
may interfere with the other species’ niche ranges.

In contrast to A. melanopus, exposing juvenile A. percula to
suspended sediments had no detectable effect on the lamellar
length and, hence, surface area for gas exchange, or oxygen
consumption rates. This is counter to expectations, given the
current distribution of A. percula. The reason why A. percula,
unlike A. melanopus and A. polyacanthus, did not exhibit any
reductions in lamellar length on suspended sediment exposure
remains unclear. However, A. percula juveniles were on average
larger in size than A. melanopus and A. polyacanthus, and may
thus potentially have been more tolerant [3]. Regardless of
the underlying mechanism, these findings highlight that
there are interspecific variations in response to suspended sedi-
ments. Considering the limited impact of suspended sediments
on the physiology of A. percula in the present study, its absence
on turbid reefs is most probably driven by other factors, such as
the habitat preferences of its primary host, the sea anemone
Heteractis magnifica, which requires clear water [61]. However,
the present study may have underestimated the effects of sus-
pended sediments on oxygen consumption rates of fish. It is
well known that suspended sediments adhere to the mucous
layer on the gill epithelium [24]; it was not possible in the pre-
sent study to examine whether this may have reduced oxygen
uptake, because oxygen consumption rates were determined in
the absence of suspended sediments. It will be important for
future studies to examine whether the presence of suspended
sediments due to technical limitations may affect oxygen
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uptake, and whether this may compound the negative effects
of gill changes induced by suspended sediments.

Following exposure to elevated suspended sediments,
A. polyacanthus exhibited similar changes in gill structure
(i.e. reduced functional lamellar length) to A. melanopus; how-
ever, these changes did not translate to any negative effects
on metabolic performance, and the reasons behind this are
currently unclear. As mentioned above, it is possible that
the observed reductions in oxygen diffusion distances (i.e. a
thinner gill epithelium) may have compensated for declines
in oxygen uptake due to reductions in surface area. Further-
more, oxygen uptake capacity is also influenced by factors
other than gill structure, including haemoglobin oxygen-car-
rying capacity and affinity, heart rate, stroke volume and
cardiac output [34,74]; some or all of these traits may have
also been modified to enhance oxygen transport. It is also
possible that the capacity for oxygen uptake at the gills in
this species may be much higher than either the capacity to
deliver oxygen to tissues or the maximum oxygen demand
of tissues [40,75]. Not all species perfuse all of the available
lamellae and thus do not use their gill surface area to its
full potential [76,77]. This may allow them to tolerate some
gill damage without adversely affecting oxygen uptake [28].
While the underlying mechanisms are not fully resolved, it
is likely that the ability to tolerate or compensate for changes
in gill structure may allow A. polyacanthus to persist on reefs
that become increasingly more turbid, which could provide
an important competitive advantage to this species.

The underlying mechanisms that led to a reduction in
oxygen diffusion distances on suspended sediment exposure
in all three species are not clear. The onset and intensity
of gill changes in response to suspended sediments vary con-
siderably between species, life stages, angularity of sediment
particles, sediment concentration and exposure duration
[3,78,79]. The reported structural changes induced by sus-
pended sediments, however, are non-specific [24,51], and
the majority of studies examining the effects of prolonged
exposure to suspended sediments (greater than 3 days)
have documented the growth of protective cell layers, i.e.
an increase—rather than a decrease—in oxygen diffusion dis-
tances (e.g. [28,30,80]). For example, an increase in oxygen
diffusion distances was observed in a previous study on
settlement-stage A. percula exposed to the same sediment
type, exposure duration and concentration (yet at an earlier
developmental stage) as used in the present study [26].
The only study that has reported a reduction in oxygen
diffusion distances in response to prolonged suspended sedi-
ment exposure (six weeks) examined this in green grouper
(Epinephelus coioides), a coral reef fish living on turbid inshore
reefs [25]. The observed reductions in oxygen diffusion
distances in green grouper and the three coral reef fishes
examined in the present study may have been caused by
tissue abrasion [25]. However, when exposed to hypoxia
[24,36], elevated temperatures [37], air [38,39] and even
some pollutants [81], some fish species are known to actively
alter oxygen diffusion distances to regulate oxygen uptake.
As suggested by Au et al. [25], the observed reductions in
oxygen diffusion distances may have thus been the result
of a rearrangement of cell layers to enhance oxygen
uptake, rather than gill damage (see also [40,41,81]). Regard-
less of the underlying mechanisms, reductions in oxygen

diffusion distances may enhance the susceptibility of fish to
parasites and pathogens and may interfere with ion- and
osmoregulation [41].

5. Conclusion

Up to half of the world’s coral reefs are threatened by poor
water quality [82], with continued and rapid expansions of
coastal human populations likely to exacerbate the inputs
and resuspension of terrestrial sediments [2,6]. Identifying
the mechanisms that drive changes in coral reef fish assem-
blages in response to human impacts is of key interest for
the conservation of coral reefs [83,84]. Our findings suggest
that A. melanopus, a species frequently found on turbid
reefs today [61], may decline in abundance or disappear
from turbid reefs as suspended sediments increase, owing to
the impacts of suspended sediments on the oxygen uptake
rates of juveniles. Other species, such as A. polyacanthus or
A. percula, may be insensitive to short-term exposure to sus-
pended sediments and may remain unaffected or even gain a
competitive advantage under certain conditions. However,
while juvenile A. polyacanthus and A. percula did not suffer
any reductions in metabolic performance upon suspended
sediment exposure, the observed changes in gill structure
may potentially compromise their capacity to cope with
other environmental factors that affect oxygen demand or
oxygen availability, such as increasing water temperatures,
ocean acidification or falling dissolved oxygen levels caused
by climate change [85]. The combined effects of suspended
sediments, elevated temperature and hypoxia on gill structure
and function of reef fish will thus be important to consider in
future studies. The present study shows that investigating the
effects of suspended sediments on physiological processes
plays an important role in the identification of winners and
losers under future suspended sediment conditions and can
provide crucial information for the conservation of coral reefs.
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