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Abstract

Photographic identification (photo ID) is an established method that is used to count
animals and track individuals' movements. This method performs well with some spe-
cies of elasmobranchs (i.e., sharks, skates, and rays) where individuals have distinctive
skin patterns. However, the unique skin patterns used for ID must be stable through
time to allow re-identification of individuals in future sampling events. More recently,
artificial intelligence (Al) models have substantially decreased the labor-intensive pro-
cess of matching photos in extensive photo ID libraries and increased the reliability of
photo ID. Here, photo ID and Al are used for the first time to identify epaulette
sharks (Hemiscyllium ocellatum) at different life stages for approximately 2 years. An
Al model was developed to assess and compare the reliability of human-classified ID
patterns in juvenile and neonate sharks. The model also tested the persistence of
unique patterns in adult sharks. Results indicate that immature life stages are unreli-
able for pattern identification, using both human and Al approaches, due to the plas-
ticity of these subadult growth forms. Mature sharks maintain their patterns through
time and can be identified by Al models with approximately 86% accuracy. The
approach outlined in this study has the potential of validating the stability of ID pat-
terns through time; however, testing on wild populations and long-term datasets is
needed. This study's novel deep neural network development strategy offers a
streamlined and accessible framework for generating a reliable model from a small

data set, without requiring high-performance computing. Since many photo ID
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shark identification.
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1 | INTRODUCTION

In ecological research, identifying and counting individuals within a
species is often the first step to understanding population dynamics.
Long-term monitoring of aquatic species has traditionally used
capture-mark-recapture (CMR) methods, which involve tagging or
“marking” of individual organisms to differentiate them within their
population, facilitating subsequent re-captures over time and the
reconstruction of re-encounter histories (Jolly, 1965; Musick &
Bonfil, 2005; Pine et al., 2003). Data derived from CMR studies are
then used to estimate population sizes and collect information on life-
history parameters, animal movement, and habitat use (Cameron
et al., 2019; McCoy et al., 2018; Peterson & Grubbs, 2023). However,
CMR methods require the physical capture and handling of individ-
uals, posing logistical challenges, potential danger for the animal and
the researchers, and possibly disrupting natural behaviors (Bouyoucos
et al., 2020; Pauli et al., 2010). Photographic identification (herein,
photo ID) has emerged as a non-invasive alternative, gaining traction
alongside technological advancements in media data acquisition and
processing (Miele et al., 2021; Pierce et al., 2019). Photo ID originated
in the 1970s (Myrberg & Gruber, 1974) and applies image-based bio-
monitoring (i.e., photographs). This method leverages unique and tem-
porally stable biometric features similar to fingerprints, which are
unique to an individual, thus helping identification (Jenrette
etal, 2022).

Tracking the same individuals through time can be challenging in
marine environments, particularly when targeting cryptic species that
naturally occur in low abundance, spend most of their time at inacces-
sible depths, or constantly move across large distances (Harty
et al., 2022; Jackson et al., 2006; Ramsey et al., 2019). The advent of
underwater video technologies has assisted the increasing popularity
and growing adoption of photo ID as a method for monitoring marine
animals (Anderson & Goldman, 1996; Arzoumanian et al., 2005;
Corcoran & Gruber, 1999; Hammond et al., 1990). This is particularly
relevant for animals that are too large to be captured or for protected
species where direct manipulation may be challenging. Among these
species, there are several examples of elasmobranchs (i.e., sharks,
skates, and rays) that have been studied using photo ID (Marshall &
Pierce, 2012). Photo ID is arguably the standard method for monitor-
ing white sharks (Carcharodon carcharias; Becerril-Garcia et al., 2020;
Micarelli et al., 2021; Schilds et al., 2019), whale sharks (Rhincodon
typus; Araujo et al., 2019; Arzoumanian et al., 2005), gray nurse sharks
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studies commence with limited datasets and resources, this Al model presents practi-
cal solutions to such constraints. Overall, this approach has the potential to address

challenges associated with long-term photo ID data sets and the application of Al for

artificial intelligence, deep learning, elasmobranch, Hemiscyllium ocellatum, machine learning,

(Carcharias taurus; Bansemer & Bennett, 2008), Indo-Pacific leopard
sharks (Stegostoma tigrinum; Dudgeon et al., 2008), and manta rays
(Mobula alfredi and M. birostris; Harty et al., 2022; Town et al., 2013).
However, from the ~1200 species of elasmobranchs (IUCN SSC Shark
Specialist Group, 2023), there are only a few examples of photo ID
being used for other species, for example blacktip reef sharks (Carch-
arhinus melanopterus; Mukharror et al., 2019), basking sharks (Cetorhi-
nus maximus; Gore et al., 2016; Southwood, 2008), great hammerhead
sharks (Sphyrna mokarran; Guttridge et al., 2017), nurse sharks (Gingly-
mostoma cirratum; Castro & Rosa, 2005), white spotted eagle rays
(Aetobatus narinari; Cerutti et al., 2018), bull rays (Aetomylaeus bovi-
nus; Moreno et al., 2021), and several species of skates (Benjamins
et al., 2018). Generally, photo ID has gained acceptance and traction
as a reliable method for studying elasmobranch population dynamics
and ecology (Pierce et al., 2019). Yet the low number of species stud-
ied implies that not all species are suitable for photo ID (Marshall &
Pierce, 2012).

Certain conditions and assumptions need to be satisfied to
achieve reliable and accurate results in photo ID studies. One of the
main conditions for photo ID is that morphological features used for
identification must be both discernible and stable through time, and
several species of elasmobranchs exhibit natural patterns conducive
to ID (Armstrong et al., 2020; Arzoumanian et al., 2005; Harty
et al., 2022). However, only a few studies have attempted to validate
photo ID through multi-modal methodologies or by convergent evi-
dence from different markers, including sex and external tags
(Bansemer & Bennett, 2008; Dudgeon et al., 2008; Gubili et al., 2009;
Winton et al., 2023). For example, white sharks are identified by the
trailing edge of their dorsal fin, which may seem quite similar among
individuals, but on closer examination it carries substantial individual-
ity (Andreotti et al., 2014). When photo ID is used as a CMR method
for long-term studies, the stability of patterns is often inferred via
observational evidence, but this is rarely subjected to a systematic,
longitudinal evaluation (Bégue et al., 2020; McCoy et al., 2018; Pratt
Jr. et al, 2022; Winton et al., 2023). Additionally, in species that
exhibit ontogenetic changes in their morphology, such as Indo-Pacific
leopard sharks (Stegostoma fasciatum) and tiger sharks (Galeocerdo
cuvier; Fu et al., 2016), the presence and persistence of patterns dur-
ing early life stages constitute a species-specific variable that is not
universally addressed, thereby constraining the applicability of photo
ID to mature life stages for most species (Marshall & Pierce, 2012).

Another essential consideration is the approachability of the species
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in their natural habitat. While contemporary underwater video tech-
nologies can access a broad range of environments and depths, opti-
mal photograph quality is typically achieved at shallow depths and in
clear waters (Deakos et al., 2011; Marshall et al., 2011; McCoy
et al., 2018). Consistent or well-defined seasonal aggregations of cer-
tain species in known locations facilitate longitudinal, photographic
documentation, thereby enhancing the reliability of re-sightings for
population modeling (Changeux et al., 2020; Marshall & Pierce, 2012;
Pratt Jr. et al., 2022). Some elasmobranch species, such as manta rays,
whale sharks, and white sharks, meet the assumptions and conditions
for successful photo ID, resulting in large-scale, multilocation, long-
term projects that compile extensive datasets of photographs through
time (Araujo et al., 2017; Armstrong et al., 2019; Norman et al., 2017).
For example, the Wild Book for whale sharks (McCoy et al., 2018) and
the Manta Matcher (Town et al., 2013) are examples of open-access
global datasets of photographs that can be collected by anyone,
anywhere.

To expedite processing times and reduce the potential for human
error, many photo ID projects have implemented automated or semi-
automated image analysis through artificial intelligence (Al; Carter
et al.,, 2014; Miele et al., 2021; Weinstein, 2018). As an example, open
access platforms such as WildMe (https://www.wildme.org/what-we-
do.html) have developed Al-powered computer vision technologies
for some of the most iconic elasmobranch species to facilitate individ-
ual recognition, such as Sharkbook and Manta Matcher (Conservation
X Labs, 2024). These platforms are under continuous maintenance to
develop new solutions and improve the speed, automation, and accu-
racy of identification. In computer technologies, Al refers to a goal,
machine learning is a technique, and deep learning is a tool, but these
terms are used interchangeably in the literature. Machine learning
refers to a type of algorithm that can autonomously identify patterns
in data, even when data are nonlinear and complex, and can create
predictive models (Christin et al., 2019). The application of machine
learning in computer vision goes back to simple statistical modeling
and shallow neural networks (Hu et al., 2012), but this technology has
recently evolved into advanced, deep neural networks (DNN;
Jahanbakht et al., 2022). Most photo ID projects on elasmobranchs
have used shallow neural networks, heavily relying on researchers'
expertise to perform feature extractions and labelling (Andreotti
et al., 2018; Arzoumanian et al., 2005; Hughes & Burghardt, 2017;
Town et al., 2013). The more advanced DNNs use a function approxi-
mator called a neural network that contains different modifiable
parameters organized in layers of neurons. These layers can receive
the data, process it (within the processing core), and give the result of
the model (output layer). One of the most important advantages
of DNNs in photo ID applications is the automated extraction of dis-
tinguishing features from an image. The feature extraction process
takes place within the multiple layers of the processing core, where
progressively more accurate outputs are given through a self-
improving learning process (LeCun et al., 2015). This is achieved by
customizing one of the layers of the neural network for the image
classification task. Specifically, the convolutional layer is used in con-

volutional neural networks (CNNs) and is often adopted for computer

vision as it can extract specific patterns to classify images. CNNs have
achieved the best performances in photo ID studies of turtles, great
apes, giant pandas, and giraffes, but major limitations arise with small
and unlabeled training datasets, temporal changes in morphology, and
re-identification (Christin et al., 2019; Miele et al., 2021). The auto-
mated re-identification of previously known individuals is a necessary
feature of Al applied to photo ID. Currently, most models rely on an
extensive library of photographs for training, and as a new individual
is photographed, the model needs to be completely retrained
(Schneider et al., 2022). Similarity comparison networks are a novel
approach to addressing the issues of re-identifying individuals from
small and unlabeled datasets (Miele et al., 2021), which is often the
best available resource when studying wild populations of
elasmobranchs.

The aim of this study was to develop a framework to incorporate
novel Al approaches in photo ID projects for long-term monitoring of
elasmobranchs. In photo ID studies, the species of choice needs to be
easily distinguishable by its individually unique patterns. In this study,
this requirement was fulfilled by choosing a species of elasmobranch,
the epaulette shark (Hemiscyllium ocellatum), as the focal species and
developing a photo ID protocol that incorporates both standard photo
ID processes and innovative Al applications. Importantly, epaulette
sharks change patterns as they mature from their neonatal stage,
allowing this study to assess the implications of unstable patterns dur-
ing early ontogeny (Ferreira et al., 2020). Focusing on a captive popu-
lation of epaulette sharks, the model could be trained with
photographs of known individuals, from all life stages, and at different
times throughout the study. The same model was used to test if pat-
terns change over time and whether immature life stages can reliably
be identified from their patterns. The trial-and-error process in this
study led to the final photo ID protocol and Al model, which repre-
sents an ideal trade-off between simplicity, flexibility, precision, and

Al innovation.

2 | MATERIALS AND METHODS

21 | Ethics

The care and use of experimental animals complied with the animal
welfare laws determined by the Australian Code for the Use of Ani-
mals for Scientific Purposes, and the guidelines and policies as
approved by the James Cook University Animal Ethics Committee
(protocol A2826). The animals that were photographed in captivity
were collected under the appropriate Great Barrier Reef Marine Park
Authority (GBRMPA #G19/43380.1) and Queensland Fisheries
(#200891) permits.

2.2 | Photographing sharks

Epaulette sharks have a distinctive and individually unique pattern

that can be used to distinguish adult individuals from each other. On
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FIGURE 1

the other hand, newborn and juvenile individuals can be harder to
identify, as their pattern is constantly changing as they mature
(Figure 1) (Payne, 2012). However, to date, there has been no scien-
tific study that systematically observes and annotates how the pat-
terns change with growth, and all available information has only been
from anecdotal observations in captive environments. The changes
observed in the patterns of young epaulette sharks provided an
opportunity to test the stability of patterns for non-mature individ-
uals. In the current study, eight adults, four juveniles, and five neo-
nates were photographed at the Marine and Aquaculture Research
Facility Unit (MARFU) at James Cook University. The sharks photo-
graphed in this study were maintained in a controlled environment
and separated in different tanks, allowing researchers to easily distin-
guish known individuals with their respective ID number. Additionally,
the controlled environment provided a convenient setting for
repeated photographic documentation of known individuals
(Bansemer & Bennett, 2008). Also, the quality of photographs can be
ensured, and unusable photographs can be re-taken. This is not
always feasible with wild populations due to varying conditions,
including low visibility, surface and underwater photography, and the
use of different camera types. To account for that, photographs for
this study were taken with different angles, light availability, and all
sorts of devices were used, from phones to professional cameras. This
approach provided the Al model with a sufficient degree of variation
in the examples used for training. In turn, this would give the model a
certain degree of flexibility in what type of photographs can be usable
for training. An additional difference between working with a captive
population and a wild population is that captive populations are often
closely monitored, sharks are known by ID, and records of labeled
photographs are often available. These favorable conditions provide
the Al model with a good base of information to start training. On the
other hand, training a model for a wild population might be an ongo-
ing and continuously updating process, as new individuals enter the
population and need to be identified. To overcome the inconvenience

of having to re-train the model every time a new individual is added,

From the left, typical neonate (a), juvenile (b), and adult (c) epaulette sharks (Hemiscyllium ocellatum).

this model implemented a similarity network approach similar to the
one used in past studies (Schneider et al., 2022).

2.3 | Dataset organization

Two series of photographs were taken: the baseline series and
the time series. The baseline series comprised photographs of all
sharks, and each shark was photographed multiple times on the
same day. These photographs were classified by ID into the base-
line dataset. The purpose of this dataset was to have multiple
photographs of the sharks to train and test the Al model. Addi-
tionally, because all photographs were collected on the same day,
there were no confounding effects of morphological changes that
could have occurred through time. The time series of photographs
were classified in the time dataset. The time dataset consisted of
temporally consecutive photographs of the same sharks and was
employed to test the model's ability to compare photographs of
the same individual over time to assess if morphological changes
have occurred in the ID patterns over time. Each photograph in
the time dataset was labeled with the shark's ID and a time
marker, such as TO, T1, T2, T3, (..), Tn. Time intervals between
consecutive photographs of adult and juvenile sharks were not
standardized (see Table S1). This approach is relevant for the
model's real-world applicability, given that re-sightings of wild elas-
mobranchs are unlikely to occur at regular intervals due to envi-
ronmental factors. However, the time elapsed between
consecutive photographs of neonate sharks was deliberately con-
trolled to be taken within one week. However, some photographs
were not usable due to poor quality, and had to be discarded.
Nevertheless, the time elapsed between two consecutive photo-
graphs was never longer than one month. For instance, significant
pattern changes were expected for neonate epaulette sharks
within the first year post-hatch (Figure 2), and photographs were

taken often and regularly to capture such changes.
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Image data Evaluation Model Accuracy
All life stages Image-based EfficientNetB4-Head 47.00%
EfficientNetB4-PEC 41.70%
EfficientNetB4-FDF 44.90%
EfficientNetB4-FDB 56.20%
XGBoost-all patches 90.40%
All life stages Shark-based EfficientNetB4-Head 46.20%
EfficientNetB4-PEC 39.20%
EfficientNetB4-FDF 37.40%
EfficientNetB4-FDB 53.80%
XGBoost-all patches 90.10%
Adult only Image-based EfficientNetB4-Head 71.30%
EfficientNetB4-PEC 75.00%
EfficientNetB4-FDF 23.30%
EfficientNetB4-FDB 65.40%
XGBoost-all patches 85.30%
Adult only Shark-based EfficientNetB4-Head 75.00%
EfficientNetB4-PEC 75.00%
EfficientNetB4-FDF 22.20%
EfficientNetB4-FDB 40.40%
XGBoost - all patches 86.10%

HO117_T1 day 10 HO117_T3 day 32

HO117_T7 day 66

TABLE 1 Comparing the accuracy,
precision, and mean absolute error (MAE)
performances of different deep neural
network models on multiple
combinations of the testing dataset.

Precision MAE
8.10% 0.53
8.20% 0.583
5.60% 0.551
7.10% 0.438
9.40% 0.096

14.40% 0.538
14.80% 0.608
10.60% 0.626
13.30% 0.462
47.20% 0.099
31.20% 0.287
28.80% 0.25
14.60% 0.767
18.40% 0.346
45.50% 0.147
47.10% 0.25
46.20% 0.25
22.20% 0.778
11.10% 0.596
—100% 0.139

HO117_T13 day 199

HO117_T11 day 184

FIGURE 2 A typical neonate growth and change in pattern morphology in approximately 6 months.

24 | Photograph enhancement and masking

Expanding on the dataset preparation, both the baseline and time
datasets underwent a cleaning process. This involved removing dupli-
cates (identical photographs) and blurry/low-resolution photographs.
Additionally, any photograph that did not display a dorsal orientation
was excluded. Furthermore, each of the retained photographs was
masked using the free program, Gimp - GNU Image Manipulation
Program (version 21.0; GIMP Development Team, 2019). This

masking technique is further illustrated in Figure 3ab, where the
visual focus is solely on the shark's silhouette, effectively eliminating
any background distractions. Cropping the image to exclude the back-
ground facilitates the task of the Al model and decreases the amount
of computational power needed. Generally, when processing images
with low computational power (when high-performance computing
[HPC] is not available), it is best to pre-edit the images used for train-
ing and testing. Cropping away the background and flagging identifi-
cation features is more labor intensive but dramatically reduces the
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FIGURE 3 (a) Original image,
(b) image mask, and (c, d, e, f)
four subsampled image patches
(head, pec, the dorsal area just
ahead of the first dorsal fin
[FDF], and the dorsal area just
past the first dorsal fin [FDB]) of
image HO_100_BOP2. These
patches are sections of the
sharks' body: (c) the head, (d) the
area around the gills and pectoral

fins, (e) the dorsal area in front of
the first dorsal fin, and (f) the
dorsal area behind the first
dorsal fin.

(a) original

need for large computational power. This step can be avoided if HPC

is available for image processing.

2.5 | Skin boundary labelling

To accurately train deep learning models without overtraining, images
were randomly grouped into batches of 16 images. The DNN's inter-
nal variables were gradually updated by these batches in an iterative
process. Training an advanced DNN with batches of 16 high-
resolution images (i.e., 5472 x 3648 pixels) would typically require
HPC, which is not readily available. To overcome this issue, four
patches (i.e., body sections) from each shark image were subsampled
(Figure 3c-f). These patches include the head (Figure 3c), pectoral/
gills area (pec) (Figure 3d), the dorsal area just ahead of the first dorsal
fin (FDF) (Figure 3, e), and the dorsal area just past the first dorsal fin
(FDB) (Figure 3f).

By cropping and resizing the original images into four patches of
380 x 380 pixels, the need for HPC is eliminated. These body sec-
tions were chosen based on the experience of researchers and volun-
teers working in the laboratory where animals are routinely identified
for measurements, feeding, and experiments. These four sections are
thought to be the sections with most differences between individuals.
The roLabellmg program (Cgvict, 2017) in Python (Van Rossum &
Drake, 2009) was used to create “boxes” around these body sections
(Figure 3a): The head region starts from the tip of the shark's nose,
and down to approximately three-quarters of the head length before
the beginning of the pectoral region. The pec region starts from the
top of the pectoral fin, behind the gills, to the base of the shark's black
ocellus. The FDF region was designated as the heavily spotted region
between the top of the pelvic fins to the base of the pelvic fins, found

in front of the first dorsal fin. The FDB region was indicated by the

(b) Image mask

(f) FoB

(e) FOF

densely spotted region between the base of the first dorsal fin and
the front of the second dorsal fin. Four rotated rectangular boxes
were drawn and tightened around the targeted skin patterns.
Boxes were rotated to align with the direction of the vertebral line,
then the front of each box was marked to indicate the direction
toward the shark's head. This step was important to be able to align
the boxes in the correct order of the respective body sections. This
collection of boundaries was saved and uploaded with the respective

labeled photographs and masks.

2.6 | Image augmentation

In the training phase of the DNN, photographs in the training dataset
were randomly augmented to virtually increase their count and to
avoid over- and undertraining. Each image was randomized with a
series of flips (X-flip and Y-flip), rotations (90°, 180°, and 270°),
Gaussian noise, Gaussian blur, gamma contrast, linear contrast, and
other image manipulations. This image augmentation disturbs the
RGB spectrum while keeping the sharks' skin patterns visually recog-
nizable. This helps with training the model on shark skin patterns,

instead of learning skin colors and color contrasts (Figure 4).

2.7 | Training and testing

The Al model was initially trained and tested using the baseline data-
set. When developing Al models, available photographs are sub-
grouped into training and testing datasets. This process is necessary
to “teach” the model with similarities and differences for distinguish-
ing individuals. From the baseline dataset, photographs of only six

adults, three juveniles, and four neonates were used for training. It is
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FIGURE 4 An example of random image augmentations for HO_100_BOP1. (a) Original head, pec, dorsal area just ahead of the first dorsal fin
(FDF), and dorsal area just past the first dorsal fin (FDB) patches of the shark, and (b) head, pec, FDF, and FDB with random augmentations.

important to note that not all the adults, juveniles, and neonates were
shown during training. This process ensured that, when tested, the
model looked for features within a new photograph, rather than
remembering the previously seen the photographs themselves
(Schneider et al., 2022). The remaining photographs not shown during
training were grouped in the testing dataset, together with photo-
graphs of the remaining two adults, one juvenile, and one neonate.
Furthermore, the time dataset was only used for the model testing.
After the model had been trained on the basic task of distinguishing
individual sharks, it was tested by presenting temporally consecutive
photographs of the same shark from the time dataset. The purpose of
this additional step was to test whether the morphology of the same
shark changes through time enough so that the shark was not as dis-
tinguishable as it would be if no changes had occurred.

2.8 | Model development

The DNN model used in this study was based on the EfficientNetB4,
which is a CNN with optimum depth, width, and resolution scaling,
introduced by Tan and Le (2019). Based on the benchmarking avail-
able in the Keras website (Chollet & others, 2015), EfficientNet and
EfficientNetV2 are the most accurate models that offer small to
extra-large architectures with 29 to 479 MB size ranges. Among them,
EfficientNetB4 was chosen as its 75 MB architecture fits well into an
Nvidia GeForce RTX 2080 GPU processor. To train the proposed
model with the limited baseline dataset (eight adults, four juveniles,
and five neonates), a transfer learning strategy was employed. The
EfficientNetB4 model was pre-trained with 14,197,122 existing
images of 1000 annotated objects in the ImageNet (Deng
et al.,, 2021). The bottom layers of the pre-trained model were then

retained, and the top layer replaced with a customized new top. Dur-
ing the training, all 17,673,823 pre-trained weights of the bottom
layers were frozen, and only the 121,886 weights of the new top layer
received training from the augmented images dataset.

The trained bottom layers were duplicated to form two identically
frozen EfficienNetB4 models, each accepting an image patch at their
inputs (Figure 5). The output of both models passed through an aver-
age pooling block to extract two image representations of the two
input patches with a numerical vector that simply represents/encodes
its relevant image. The two vectors were then concatenated into a
single vector and passed through two subsequent dense layers. The
first dense layer consisted of 32 fully connected neurons with recti-
fied linear unit (ReLU) activation function. The second dense layer
comprised one neuron with sigmoid activation to output a single
probability-like number between 0 and 1. This number is called the
similarity index, and it shows the probability of the two input images
being the same shark (1) or not (0). The larger the value, the higher
the probability of two patches having similar skin patterns. The simi-
larity index was adopted to identify single sharks by comparing the
similarity indices returned during the analysis. Due to the limitation of
only having 20 different sharks, the model was asked “Are these two
sharks similar?” instead of “What is the ID of this shark?” This
approach has been referred to as the similarity network approach and
has been tested on several species, with photographs from open-
access datasets (Schneider et al., 2022).

29 | Model assembling process

Using the four different patch types in the image dataset (i.e., head,
pec, FDF, and FDB), four independent Al models were trained. With a
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further innovative step, the four Al models were ensembled (e.g., a
combination of multiple algorithms) into a single decision-making
model. The chosen model was XGBoost ensemble, which has recently
attracted more attention as a model assembling method (Jahanbakht
et al., 2023). The four similarity indexes of the Al models were
concatenated into X, which was then inputted into an XGBoost model
and represented as a collection of M decision trees (Figure 6). The
optimum value is automatically detected by the algorithm during
the data fitting process (model training). Each decision tree i receives
similarity indexes and returns T;(X,r;_1), where r;_1 is the residual out-
put from the previous tree. The overall output of the XGBoost regres-
sion ensemble was then calculated as follows (Jahanbakht
et al,, 2023).

final similarity index = 3" a;T;(X,r;-1)

ro=0

To infer an XGBoost model, images of two sharks were needed
(either the same or different individuals). The head, pec, FDF, and
FDB patches were extracted for each image, and the pairs fed into
their relevant EfficientNetB4 model. This process generated the calcu-

lated final similarity index at the output of the XGBoost model. Any

value greater than 0.5 (on a 0-1 scale) means that the input two
images belong to the same shark; otherwise, they belong to different
sharks. The process was named “image-based evaluation”: one image
of one shark is compared to another image of another shark. How-
ever, in this case, multiple images of the same shark are available, and
a better-performing process can be implemented. If K; images are
confidently taken from shark 1 and K, images are taken from shark
2, then K1 x K5 is the number of different image pairs that can input
the XGBoost model one by one. This resulted in K1 x K5 different final
similarity indexes that were averaged to a number between O and
1. In contrast to the previous image-based evaluation, this process is
called “shark-based evaluation.”

3 | RESULTS

3.1 | Dataset organization

The image-based evaluation method was employed, where the simi-
larity score is the result of the comparison between one image of one
shark with only one other image of a different shark. The accuracy for
the EfficentNetB4 - head/pec/FDF/FDB ranged between 47.0% and
56.2% accuracy, with low precision below 10% (Table 1: all life stages,

85UB01 SUOWIWOD SA[IEeID) 3(dedl|dde auyy Aq peusenob aJe ol WO ‘8sN JO S8|nJ o} A%iqiT8UlUQ AB]I/ UO (SUONIPUOD-PUR-SLLLIBY WD A8 I ARe.q1jBu JUO//:SdnL) SUOIPUOD pue SWS 1 81 88S *[G202/TT/2T] uo Ariqiiauliuo Aeim ‘AiseAun %000 sewer Ag Z88ST q4I/TTTT OT/I0p/W00 A8 im Areiqijpul|uo//sdny wouy pepeojumod ‘9 ‘vZ0z ‘6798560T



1580 i LONATI ET AL.
= FISHBIOLOGY 2@
FDB FDF Head PEC XGB
1.04 y: 7,
© ; 2 4
© . 7 y
Sors - y Ky '
o v ; Life Stage
2 / / / ~ Adults
= 0.50- ) / -
o + Juveniles
Qq; ot -o- Neonates
=S 0.254 ’ 4
= --0.83 ~0.56 sF ~0.78 - 0.90
- 0.68 =050 |||, =0.60 ~0.54
0.04 ~-0.50 042 ~-0.48 ~-0.40
1.0 7 ~ ~
© . p 2 y
o7 ; p
q) {4
< h a Life St
.‘%‘ 0.504 / I e oStage
1) y / -o- Adults
0‘ // /I
8 0254
= 7 S
0.0- ~094 ~0.84 | | o ~0.71 ~072| ¢ ~0.94
0.0 0.25 0.50 0.75 1.00.0 0.25 0.50 0.75 1.00.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0
False Positive Rate
FIGURE 7 (a) Receiver operating characteristic curve for models trained on all life stages, and (b) on adults only. The area under the curve

(AUC) represents the degree of separability between two classes (pairs of similar and dissimilar sharks in our case). The closer the value of AUC to

1, the better the model is at distinguishing two sharks from each other.

image-based). XGBoost showed a better performance (approximately
90% accuracy) as it combined all independent Al results into the final
accurate decision on similarity or dissimilarity. Despite the accuracy
increased by XGBoost, the precision was still lower than 10% (Table 1:
all life stages, image-based). This suggests that, although the approach
is correct, there might be issues with the distinguishability of individ-
uals, possibly arising from having only one image per shark with which
to train.

To improve the precision of the models the shark-based evalua-
tion was applied to the first version of the models in the previous sec-
tion. The shark-based evaluation used the same datasets for training
and testing but compared two groups of images (each group contain-
ing images of two different sharks), instead of one image per shark.
Each group was previously classified to the correct ID in the training
and testing datasets. All models increased precision by averaging over
the multiple image pairs, with the XGBoost model as the most optimal
with scores of 90% accuracy and 47.2% precision (Table 1: all life

stages, shark-based).

3.2 | Testing the model: Can the model distinguish
individuals?

The receiver operating characteristic (ROC) curves show the perfor-
mance of the models when distinguishing individuals (Figure 7). By

adopting the similarity learning approach, the model was tested with

the question “Are these two sharks similar or dissimilar?” rather than
the question “Who is this shark?” This approach simplifies and
streamlines the task by adopting an intuitive solution and asking to
learn to distinguish individuals rather than learning their
ID. Furthermore, this approach allows for any new animals to enter
the population without having to re-train the model to include a new
ID (Schneider et al., 2022). In Figure 7, the area under the curve (AUC)
values range from O to 1 and represent how well the model distin-
guishes two images.

When testing models on pairs of neonate sharks, the AUC values
ranged from 0.50 for the model focusing on the pec area, to 0.40 for
the XGBoost model (Figure 7a, neonates). The low AUC values indi-
cate that there is no model available that is effective enough to distin-
guish neonate sharks from each other. The inability of the model to
distinguish immature life stages is consistent with the experience of
researchers who were tasked with the ID of neonate sharks. After
repetitive ID sessions and several hours of sorting photographs,
researchers succeeded in matching the ID to the right individual,
mainly referring to the head area. Similarly, researchers were chal-
lenged with the ID of juvenile sharks (Figure 7a, juveniles and neo-
nates). Models for juveniles showed some AUC improvement over
neonates, ranging from 0.72 to 0.50, but were still considered to be
poor determinants for differences among sharks. Overall, no model
could reliably distinguish immature sharks from each other.

Alternatively, models trained on all life stages and tested on adult

sharks showed considerable promise in the identification of

85UB01 SUOWIWOD SA[IEeID) 3(dedl|dde auyy Aq peusenob aJe ol WO ‘8sN JO S8|nJ o} A%iqiT8UlUQ AB]I/ UO (SUONIPUOD-PUR-SLLLIBY WD A8 I ARe.q1jBu JUO//:SdnL) SUOIPUOD pue SWS 1 81 88S *[G202/TT/2T] uo Ariqiiauliuo Aeim ‘AiseAun %000 sewer Ag Z88ST q4I/TTTT OT/I0p/W00 A8 im Areiqijpul|uo//sdny wouy pepeojumod ‘9 ‘vZ0z ‘6798560T



LONATI ET AL

differences between adult individuals. The head model and the
XGBoost model retained the strongest AUC values, 0.86 and 0.90,
respectively (Figure 7a, adults). The least accurate model was the FDF
(0.56) model, followed by the FDB model (0.78) (Figure 7a, adults).

3.3 | Training on adults-only, image-based, and
shark-based methods

Because the model is not able to differentiate immature individuals,
the training of the first version of the models could have been
affected by the presence of images that cannot be distinguished by
the model. The presence of neonates and juveniles in the training
datasets might have “confused” the model in the training phase. For
this reason, neonates and juveniles were removed from the training
dataset, and the second version of the models were trained on the
adult sharks only. The precision increased from 9.4% of the previous
image-based model to 45.4% when the model was trained on adults
only (Table 1: adult only, image-based). However, the accuracy of the
model decreased from 90.4% to 85.3% because of the smaller training
dataset including only adult sharks. The best results overall were
achieved when introducing the shark-based evaluation to the model
trained on adult sharks, reaching 86% accuracy and nearly 100% pre-
cision (Table 1: adult only, shark-based). With this approach, the ROC
curves for the head and pec models have AUC values of 0.93 and
0.83, respectively, while the XGBoost model seems to have the best
results and an AUC value of 0.94 (Figure 7b). Intuitively, because the
training for this last set of models was done on adults only, the model

can only be tested on adult sharks.

3.4 | Results of the temporal analysis

Finally, with the same Al model design, the time dataset was used to
assess substantial changes in the morphology by using images of the
same adult shark through time. Each time step (T1, T2, T3, and T4)
was measured against baseline images of the same shark, which were
taken after all the photographs for the time dataset (Table S1). The
analysis was limited to adult sharks, as the previous results have
shown the Al model could not reliably distinguish juveniles and neo-
nates from each other. The spot patterns of adult epaulette sharks are
thought to be permanent, but the long-term stability of patterns was
never tested for adults, juveniles, and neonates. Results from the deep
learning model confirm that the pattern morphology of adult sharks
remained stable through the duration of the study (~21 months). The
same model could be used with longer time intervals between photo-
graphs. Although a historical database of photographs could be
insightful of longer-term morphological changes, this study suggests
that, once adult maturity has been reached, patterns can stabilize and
remain the same through the lifetime of epaulette sharks. The effec-
tiveness of the applied deep learning model is most evident with
larger, historic database of photographs. In the case of long-term data-
base, this model could be applied across thousands of individuals and
recognize small changes in morphology through time. Such changes

s FISHBIOLOGY |

would be represented by a small decrease in similarity score, indicat-
ing that the animal seems to be the same individual, but something
has changed in its morphology. The best-performing head, pec and
XGBoost models were trained on adults only (Figure 8a) and on all
sharks (Figure 8b). Each model returned similarity indexes above 0.5,
but as expected, the models trained on adults only had better perfor-
mance. Similarity values above 0.5 suggest that spot patterns do not
change significantly. In terms of the performance of the models, when
trained on all age groups (Figure 8b), pec is a better indicator of age's
effect on skin pattern. When models are trained with adult sharks
only (Figure 8a), the head area seems to be a better indicator of differ-
ences through time. XGBoost was determined to be a reasonable
choice in both cases.

4 | DISCUSSION

This study is the first to develop a photo ID protocol for epaulette
sharks, contributing to the small list of species that can be effectively
studied using photo ID. The protocol outlined in this study includes a
series of innovative solutions in the field of applied Al to photo
ID. First, the deep learning model was effectively trained on a small
dataset of labeled images, the model was developed with a regular
computer with standard computational power, and the model used the
similarity network approach to ID individual sharks, overcoming the
typical close-population assumption of many photo ID models. Further-
more, the protocol was used to assess the reliability of patterns for
immature life stages, and to detect changes in morphology through
time. Because of the small number of images required, the proposed
protocol provides a cost- and time-effective tool to test
the applicability of photo ID on new species of elasmobranchs and per-
haps teleost fishes and cetaceans. The same method can be useful for
species like manta rays and whale sharks that have been surveyed with
photo ID for decades (Harty et al., 2022; McKinney et al., 2017). For
instance, this new approach provides a tool to validate whether skin
patterns change over long-term studies by using the similarity network
approach on large databases of photographs collected through time.
The long-term stability of ID patterns can also be confirmed by pairing
photographs with genetic samples of individuals (Gubili et al., 2009),
but genetic methods are not always logistically or financially possible.
However, the reliable identification of individuals with morphology and
the long-term stability of such morphological traits are fundamental
requirements for population studies using photo ID as a non-invasive
capture mark recapture method. The protocol proposed in this study
represents an applicable set of solutions to photo ID and Al applications

to animal identification and population studies.

41 |
photo ID

A step-by-step approach to elasmobranch

This study presents a practical example to test photo identification for
a species that has not been previously studied using this approach.
This includes identifying features for ID, photographing sharks,
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labelling and editing photographs, and setting up a semi-automated
process to organize photographs by ID with high accuracy. Although
current photo ID projects use similar methods (Gomez-Vargas
et al., 2023; Pierce et al., 2019; Schneider et al., 2022), only a few
studies outline the step-by-step process of testing the method, com-
piling a database, and automating the ID process (Schneider
et al., 2022). Additionally, only a few studies offer solutions that can
be easily customized for different species and hypothesis
(Gomez-Vargas et al., 2023). Here we present a flowchart (Figure 9) to
visualize and exemplify the protocol, from photographs, to model

development, to final similarity index classifying animals by ID.

4.2 | Data preparation: Collecting, editing, and
organizing photographs

1. To test if the species has unique identification features, photo-
graphs need to be collected first for a few individuals (Pierce
et al., 2019). If available, photographs of different life stages should
be collected to test reliability of patterns across ontogeny. These
photographs can be classified in the baseline folder.

2. Existing photographs collected through time can be classified in
the time folder. This is used to test the stability of features through
time (Marshall & Pierce, 2012; McCoy et al., 2018; McKinney
et al., 2017). In this study, photographs of the captive animals were
collected as standard research protocol. For wild populations the
collection of photographs through time requires high residency
and/or known aggregation sites.

3. Photographs are prepared as described in the Methods
section and visualized in the flowchart (Figure 9). Importantly, the

skin boundary labelling step not only allows for easier and faster

) shark.
Region
l @ Head
........................................ ® Fecons
XGB
T2 T3

model development, but it can identify which sections of the body
are most indicative for ID and which sections may be most
affected by changes through time.

43 | Model development: Tasks 1, 2, and 3

1. Due to the highly time-consuming task of sorting photographs, it is
beneficial to develop an automated or semi-automated model for
individual recognition, even with a small dataset of photographs
and only a few individuals. For instance, once the backbone of the
model is in place, improvements and new individuals can always be
added, and the model can be easily re-trained when needed. This
can save time, allow for re-allocation of resources, and increase
productivity for researchers.

2. Task 1 presented in the flowchart (Figure 9) shows the transfer learn-
ing approach, a fundamental step used to pre-train the model when
only a small dataset of photographs is available. Task 2 represents
the standard animal identification task, which is performed by using
the similarity network approach and the XGBoost ensamble model
(see Methods sections for details on model development). Finally, the

same approach is used for task 3: “Do the spots change?”

As each species is unique, the protocol suggested in this study
can be customized and further improved in its applications. The con-
trolled environment of this study represents both a strength and a lim-
itation. The known ID of individuals, the existing record of labeled
photographs, and the quality of the photographs were important fac-
tors to be able to develop the model. On the other hand, although the
model was trained to work with a small dataset and with different

options of photograph quality, the real-life success of this method
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FIGURE 9 Flowchart that shows the protocol outlined in the study. From data preparation to the development and training of the models,
with detailed sections on the EfficientNetB4 and XGBoost ensemble models.
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needs to be tested by applying the protocol to a wild population of

epaulette sharks.

44 | Advancements in Al applications for photo ID
The application of Al through customized deep learning models is
becoming increasingly important to process and analyze long-term
datasets (Meekan et al, 2020; Schneider et al., 2022; Winton
et al., 2023). Establishing a semi-automated classifier early into the
stages of a project is most beneficial in saving time when later
the large volume of photographs makes visual identification more
challenging. However, new photo ID projects face certain challenges
in developing Al models to ID individuals from limited photographs.
First, new projects, especially when working with wild populations,
may have a limited number of photographs of the same animal for
training the Al on ID features (Christin et al., 2019; Miele et al., 2021).
Second, projects might not have access to powerful image classifiers
or HPC technology, limiting the applications of Al technology. Finally,
when new individuals are added to the population, models need to be
fully re-trained (Schneider et al., 2022). The accuracy of the DNN
model developed in this study was a stepwise process largely attrib-
uted to the efficacy of the similarity network method and XGBoost
ensemble model, resulting in more than 85% accuracy and 100% preci-
sion when identifying individuals from a small database.

45 | The XGBoost ensemble model: training Al
models with standard computational capabilities

The XGBoost approach used in this study is particularly advantageous
for new photo ID projects that may lack access to HPC, as it allows
for separate training of each model on standard computers. As a
result, high-precision Al models can be accessible to smaller photo ID
projects and feasible for smaller Non-Governmental organisations and
community-lead initiatives, which often have limited resources
(Chin & Pecl, 2018). The implementation of the XGBoost ensemble
model, which integrates outputs from four independently trained
models, each focusing on different cropped sections of the shark's
body, significantly optimized the ability of the DNN to distinguish
adult individuals with high accuracy. The XGBoost model can assess
model performance on each body section and assemble the indepen-
dent models by ranking their respective performances. For instance,
models with better performance are indicative of which body sections
are most distinct across individuals, a valuable insight for cases where
photographs capture only parts of an animal's body (Andreotti
et al., 2018; Armstrong et al., 2019; Pierce et al., 2019).

4.6 | The similarity network approach: detecting
changes through time and adding new individuals

The DNN model was trained to distinguish individual epaulette sharks
through a similarity network approach, assessing how similar two

individuals are, and using this metric to match photographs with the
correct ID (Schneider et al., 2022). Through this method, the model
can be presented with new individuals, evaluating them as different
from any shark it has previously learned, thereby identifying them as
new sharks. Additionally, the comparison of similarity scores allows
for the evaluation of morphological changes in a target species by
comparing images from different time periods and analyzing the
resulting similarity scores. The similarity network approach is a crucial
technological advancement for addressing the key requirement for
long-term photograph identification: patterns and morphology must
remain stable over time for consistent re-identification of individuals
(Ferreira et al., 2020; Marshall & Pierce, 2012).

4.7 | Using Al to identify morphology changes
through time

The best-performing version of the DNN model confirmed that adult
epaulette sharks maintained their patterns throughout the study, as
the model performance remained high when identifying individuals
from consecutive photographs in time. Changes in patterns through
time would have appeared as a substantial change in performance
score for this task. Although the efficiency of this process is yet to be
validated with wild populations, it is important to consider the effect
that temporal changes in morphology could have in the training of an
Al model. If changes in the ID patterns do occur, the ease of re-
identification through time might be affected (Pierce et al., 2019).
Additionally, if morphology does change in time, and training datasets
are assembled with temporally consecutive photographs, the training
of the model might be affected, and the model might not be able to
accurately learn the similarities between individuals. For this reason,
the similarity network approach proposed in this study can be applied
by comparing photographs of the same individual through time and
testing the performance of the model as a proxy of morphological sta-
bility. Overall, training on multiple photographs taken at the same time
is a better approach compared to training on temporally consecutive
photographs. When possible, photographs taken at the same time
offer multiple examples of different lighting and angles from which
models can reliably learn (Christin et al., 2019). While this is the best
approach to learning features, there are other methods, such as one-
shot learning, to train a model with only one photograph (Schneider
et al., 2022). For adult individuals, patterns need to be distinguishable
and persistent through time (Marshall & Pierce, 2012), and these
assumptions need to be tested for juveniles and immature individuals,
which might have significantly different morphologies compared to
adults (Bellodi et al., 2023; Fu et al., 2016).

48 |
stages

Photo ID for subadults and immature life

When the identification protocol used on adult epaulette sharks was
applied to neonates and juveniles, ID was much more challenging.
Visually distinguishing epaulette sharks at early life stages was
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difficult, and therefore poor model performance across early ontogeny
was expected (Christin et al., 2019). Consequently, photographs of
juveniles and neonates had to be excluded from the training dataset.
The exclusion of immature life stages from the training dataset raises
the question of whether photo ID is suitable for other species that
experience significant ontogenetic morphological changes during
development (Ferreira et al., 2020; Marshall & Pierce, 2012). For
instance, the Indo-Pacific leopard shark (Stegostoma tigrinum), also
called zebra sharks due to their skin patterns during the juvenile stage
(Dahl et al., 2019), may be a good candidate to test the reliability of
patterns for individual juveniles. As photo ID can only be performed
with reliable patterns, and species might experience significant
changes from their juvenile to the adult stage, it is important to con-
sider removing those stages to prevent poor model performance. On
the other hand, the protocol outlines in this study could be adapted to
systematically test the reliability of patterns over ontogeny. When fre-
quent photographs are available for each juvenile shark, Al could be
trained to detect small changes through time, until changes become
less and less revenant and patterns stabilize in the adult form.

5 | CONCLUSION

Initially, the assessment of baseline conditions necessary for photo ID
was conducted, followed by the development of an Al model to semi-
automate the photograph sorting process. The resulting deep learning
model represents a seamless integration of established methodologies
and innovative solutions, effectively identifying adult sharks and asses-
sing the stability of their patterns over time. This study introduces a
novel approach to developing a deep learning model by successfully
navigating the challenges posed by small training image datasets and
the absence of HPC capabilities. The solutions outlined in this study are
replicable, offering a framework that can be applied to test the tempo-
ral stability of identification features for other species. This is relevant
to studies currently using photo ID or exploring its applicability to new
species. The next step in applying this method involves testing it with
different species, varying database, and wild populations, ultimately
proving its usefulness across a broader range of elasmobranch species.
Tests should include both projects with long-term, large databases and

projects focusing on species that change morphology over time.
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