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Abstract

Photographic identification (photo ID) is an established method that is used to count

animals and track individuals' movements. This method performs well with some spe-

cies of elasmobranchs (i.e., sharks, skates, and rays) where individuals have distinctive

skin patterns. However, the unique skin patterns used for ID must be stable through

time to allow re-identification of individuals in future sampling events. More recently,

artificial intelligence (AI) models have substantially decreased the labor-intensive pro-

cess of matching photos in extensive photo ID libraries and increased the reliability of

photo ID. Here, photo ID and AI are used for the first time to identify epaulette

sharks (Hemiscyllium ocellatum) at different life stages for approximately 2 years. An

AI model was developed to assess and compare the reliability of human-classified ID

patterns in juvenile and neonate sharks. The model also tested the persistence of

unique patterns in adult sharks. Results indicate that immature life stages are unreli-

able for pattern identification, using both human and AI approaches, due to the plas-

ticity of these subadult growth forms. Mature sharks maintain their patterns through

time and can be identified by AI models with approximately 86% accuracy. The

approach outlined in this study has the potential of validating the stability of ID pat-

terns through time; however, testing on wild populations and long-term datasets is

needed. This study's novel deep neural network development strategy offers a

streamlined and accessible framework for generating a reliable model from a small

data set, without requiring high-performance computing. Since many photo ID
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studies commence with limited datasets and resources, this AI model presents practi-

cal solutions to such constraints. Overall, this approach has the potential to address

challenges associated with long-term photo ID data sets and the application of AI for

shark identification.
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artificial intelligence, deep learning, elasmobranch, Hemiscyllium ocellatum, machine learning,
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1 | INTRODUCTION

In ecological research, identifying and counting individuals within a

species is often the first step to understanding population dynamics.

Long-term monitoring of aquatic species has traditionally used

capture-mark-recapture (CMR) methods, which involve tagging or

“marking” of individual organisms to differentiate them within their

population, facilitating subsequent re-captures over time and the

reconstruction of re-encounter histories (Jolly, 1965; Musick &

Bonfil, 2005; Pine et al., 2003). Data derived from CMR studies are

then used to estimate population sizes and collect information on life-

history parameters, animal movement, and habitat use (Cameron

et al., 2019; McCoy et al., 2018; Peterson & Grubbs, 2023). However,

CMR methods require the physical capture and handling of individ-

uals, posing logistical challenges, potential danger for the animal and

the researchers, and possibly disrupting natural behaviors (Bouyoucos

et al., 2020; Pauli et al., 2010). Photographic identification (herein,

photo ID) has emerged as a non-invasive alternative, gaining traction

alongside technological advancements in media data acquisition and

processing (Miele et al., 2021; Pierce et al., 2019). Photo ID originated

in the 1970s (Myrberg & Gruber, 1974) and applies image-based bio-

monitoring (i.e., photographs). This method leverages unique and tem-

porally stable biometric features similar to fingerprints, which are

unique to an individual, thus helping identification (Jenrette

et al., 2022).

Tracking the same individuals through time can be challenging in

marine environments, particularly when targeting cryptic species that

naturally occur in low abundance, spend most of their time at inacces-

sible depths, or constantly move across large distances (Harty

et al., 2022; Jackson et al., 2006; Ramsey et al., 2019). The advent of

underwater video technologies has assisted the increasing popularity

and growing adoption of photo ID as a method for monitoring marine

animals (Anderson & Goldman, 1996; Arzoumanian et al., 2005;

Corcoran & Gruber, 1999; Hammond et al., 1990). This is particularly

relevant for animals that are too large to be captured or for protected

species where direct manipulation may be challenging. Among these

species, there are several examples of elasmobranchs (i.e., sharks,

skates, and rays) that have been studied using photo ID (Marshall &

Pierce, 2012). Photo ID is arguably the standard method for monitor-

ing white sharks (Carcharodon carcharias; Becerril-García et al., 2020;

Micarelli et al., 2021; Schilds et al., 2019), whale sharks (Rhincodon

typus; Araujo et al., 2019; Arzoumanian et al., 2005), gray nurse sharks

(Carcharias taurus; Bansemer & Bennett, 2008), Indo-Pacific leopard

sharks (Stegostoma tigrinum; Dudgeon et al., 2008), and manta rays

(Mobula alfredi and M. birostris; Harty et al., 2022; Town et al., 2013).

However, from the �1200 species of elasmobranchs (IUCN SSC Shark

Specialist Group, 2023), there are only a few examples of photo ID

being used for other species, for example blacktip reef sharks (Carch-

arhinus melanopterus; Mukharror et al., 2019), basking sharks (Cetorhi-

nus maximus; Gore et al., 2016; Southwood, 2008), great hammerhead

sharks (Sphyrna mokarran; Guttridge et al., 2017), nurse sharks (Gingly-

mostoma cirratum; Castro & Rosa, 2005), white spotted eagle rays

(Aetobatus narinari; Cerutti et al., 2018), bull rays (Aetomylaeus bovi-

nus; Moreno et al., 2021), and several species of skates (Benjamins

et al., 2018). Generally, photo ID has gained acceptance and traction

as a reliable method for studying elasmobranch population dynamics

and ecology (Pierce et al., 2019). Yet the low number of species stud-

ied implies that not all species are suitable for photo ID (Marshall &

Pierce, 2012).

Certain conditions and assumptions need to be satisfied to

achieve reliable and accurate results in photo ID studies. One of the

main conditions for photo ID is that morphological features used for

identification must be both discernible and stable through time, and

several species of elasmobranchs exhibit natural patterns conducive

to ID (Armstrong et al., 2020; Arzoumanian et al., 2005; Harty

et al., 2022). However, only a few studies have attempted to validate

photo ID through multi-modal methodologies or by convergent evi-

dence from different markers, including sex and external tags

(Bansemer & Bennett, 2008; Dudgeon et al., 2008; Gubili et al., 2009;

Winton et al., 2023). For example, white sharks are identified by the

trailing edge of their dorsal fin, which may seem quite similar among

individuals, but on closer examination it carries substantial individual-

ity (Andreotti et al., 2014). When photo ID is used as a CMR method

for long-term studies, the stability of patterns is often inferred via

observational evidence, but this is rarely subjected to a systematic,

longitudinal evaluation (Bègue et al., 2020; McCoy et al., 2018; Pratt

Jr. et al., 2022; Winton et al., 2023). Additionally, in species that

exhibit ontogenetic changes in their morphology, such as Indo-Pacific

leopard sharks (Stegostoma fasciatum) and tiger sharks (Galeocerdo

cuvier; Fu et al., 2016), the presence and persistence of patterns dur-

ing early life stages constitute a species-specific variable that is not

universally addressed, thereby constraining the applicability of photo

ID to mature life stages for most species (Marshall & Pierce, 2012).

Another essential consideration is the approachability of the species
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in their natural habitat. While contemporary underwater video tech-

nologies can access a broad range of environments and depths, opti-

mal photograph quality is typically achieved at shallow depths and in

clear waters (Deakos et al., 2011; Marshall et al., 2011; McCoy

et al., 2018). Consistent or well-defined seasonal aggregations of cer-

tain species in known locations facilitate longitudinal, photographic

documentation, thereby enhancing the reliability of re-sightings for

population modeling (Changeux et al., 2020; Marshall & Pierce, 2012;

Pratt Jr. et al., 2022). Some elasmobranch species, such as manta rays,

whale sharks, and white sharks, meet the assumptions and conditions

for successful photo ID, resulting in large-scale, multilocation, long-

term projects that compile extensive datasets of photographs through

time (Araujo et al., 2017; Armstrong et al., 2019; Norman et al., 2017).

For example, the Wild Book for whale sharks (McCoy et al., 2018) and

the Manta Matcher (Town et al., 2013) are examples of open-access

global datasets of photographs that can be collected by anyone,

anywhere.

To expedite processing times and reduce the potential for human

error, many photo ID projects have implemented automated or semi-

automated image analysis through artificial intelligence (AI; Carter

et al., 2014; Miele et al., 2021; Weinstein, 2018). As an example, open

access platforms such as WildMe (https://www.wildme.org/what-we-

do.html) have developed AI-powered computer vision technologies

for some of the most iconic elasmobranch species to facilitate individ-

ual recognition, such as Sharkbook and Manta Matcher (Conservation

X Labs, 2024). These platforms are under continuous maintenance to

develop new solutions and improve the speed, automation, and accu-

racy of identification. In computer technologies, AI refers to a goal,

machine learning is a technique, and deep learning is a tool, but these

terms are used interchangeably in the literature. Machine learning

refers to a type of algorithm that can autonomously identify patterns

in data, even when data are nonlinear and complex, and can create

predictive models (Christin et al., 2019). The application of machine

learning in computer vision goes back to simple statistical modeling

and shallow neural networks (Hu et al., 2012), but this technology has

recently evolved into advanced, deep neural networks (DNN;

Jahanbakht et al., 2022). Most photo ID projects on elasmobranchs

have used shallow neural networks, heavily relying on researchers'

expertise to perform feature extractions and labelling (Andreotti

et al., 2018; Arzoumanian et al., 2005; Hughes & Burghardt, 2017;

Town et al., 2013). The more advanced DNNs use a function approxi-

mator called a neural network that contains different modifiable

parameters organized in layers of neurons. These layers can receive

the data, process it (within the processing core), and give the result of

the model (output layer). One of the most important advantages

of DNNs in photo ID applications is the automated extraction of dis-

tinguishing features from an image. The feature extraction process

takes place within the multiple layers of the processing core, where

progressively more accurate outputs are given through a self-

improving learning process (LeCun et al., 2015). This is achieved by

customizing one of the layers of the neural network for the image

classification task. Specifically, the convolutional layer is used in con-

volutional neural networks (CNNs) and is often adopted for computer

vision as it can extract specific patterns to classify images. CNNs have

achieved the best performances in photo ID studies of turtles, great

apes, giant pandas, and giraffes, but major limitations arise with small

and unlabeled training datasets, temporal changes in morphology, and

re-identification (Christin et al., 2019; Miele et al., 2021). The auto-

mated re-identification of previously known individuals is a necessary

feature of AI applied to photo ID. Currently, most models rely on an

extensive library of photographs for training, and as a new individual

is photographed, the model needs to be completely retrained

(Schneider et al., 2022). Similarity comparison networks are a novel

approach to addressing the issues of re-identifying individuals from

small and unlabeled datasets (Miele et al., 2021), which is often the

best available resource when studying wild populations of

elasmobranchs.

The aim of this study was to develop a framework to incorporate

novel AI approaches in photo ID projects for long-term monitoring of

elasmobranchs. In photo ID studies, the species of choice needs to be

easily distinguishable by its individually unique patterns. In this study,

this requirement was fulfilled by choosing a species of elasmobranch,

the epaulette shark (Hemiscyllium ocellatum), as the focal species and

developing a photo ID protocol that incorporates both standard photo

ID processes and innovative AI applications. Importantly, epaulette

sharks change patterns as they mature from their neonatal stage,

allowing this study to assess the implications of unstable patterns dur-

ing early ontogeny (Ferreira et al., 2020). Focusing on a captive popu-

lation of epaulette sharks, the model could be trained with

photographs of known individuals, from all life stages, and at different

times throughout the study. The same model was used to test if pat-

terns change over time and whether immature life stages can reliably

be identified from their patterns. The trial-and-error process in this

study led to the final photo ID protocol and AI model, which repre-

sents an ideal trade-off between simplicity, flexibility, precision, and

AI innovation.

2 | MATERIALS AND METHODS

2.1 | Ethics

The care and use of experimental animals complied with the animal

welfare laws determined by the Australian Code for the Use of Ani-

mals for Scientific Purposes, and the guidelines and policies as

approved by the James Cook University Animal Ethics Committee

(protocol A2826). The animals that were photographed in captivity

were collected under the appropriate Great Barrier Reef Marine Park

Authority (GBRMPA #G19/43380.1) and Queensland Fisheries

(#200891) permits.

2.2 | Photographing sharks

Epaulette sharks have a distinctive and individually unique pattern

that can be used to distinguish adult individuals from each other. On
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the other hand, newborn and juvenile individuals can be harder to

identify, as their pattern is constantly changing as they mature

(Figure 1) (Payne, 2012). However, to date, there has been no scien-

tific study that systematically observes and annotates how the pat-

terns change with growth, and all available information has only been

from anecdotal observations in captive environments. The changes

observed in the patterns of young epaulette sharks provided an

opportunity to test the stability of patterns for non-mature individ-

uals. In the current study, eight adults, four juveniles, and five neo-

nates were photographed at the Marine and Aquaculture Research

Facility Unit (MARFU) at James Cook University. The sharks photo-

graphed in this study were maintained in a controlled environment

and separated in different tanks, allowing researchers to easily distin-

guish known individuals with their respective ID number. Additionally,

the controlled environment provided a convenient setting for

repeated photographic documentation of known individuals

(Bansemer & Bennett, 2008). Also, the quality of photographs can be

ensured, and unusable photographs can be re-taken. This is not

always feasible with wild populations due to varying conditions,

including low visibility, surface and underwater photography, and the

use of different camera types. To account for that, photographs for

this study were taken with different angles, light availability, and all

sorts of devices were used, from phones to professional cameras. This

approach provided the AI model with a sufficient degree of variation

in the examples used for training. In turn, this would give the model a

certain degree of flexibility in what type of photographs can be usable

for training. An additional difference between working with a captive

population and a wild population is that captive populations are often

closely monitored, sharks are known by ID, and records of labeled

photographs are often available. These favorable conditions provide

the AI model with a good base of information to start training. On the

other hand, training a model for a wild population might be an ongo-

ing and continuously updating process, as new individuals enter the

population and need to be identified. To overcome the inconvenience

of having to re-train the model every time a new individual is added,

this model implemented a similarity network approach similar to the

one used in past studies (Schneider et al., 2022).

2.3 | Dataset organization

Two series of photographs were taken: the baseline series and

the time series. The baseline series comprised photographs of all

sharks, and each shark was photographed multiple times on the

same day. These photographs were classified by ID into the base-

line dataset. The purpose of this dataset was to have multiple

photographs of the sharks to train and test the AI model. Addi-

tionally, because all photographs were collected on the same day,

there were no confounding effects of morphological changes that

could have occurred through time. The time series of photographs

were classified in the time dataset. The time dataset consisted of

temporally consecutive photographs of the same sharks and was

employed to test the model's ability to compare photographs of

the same individual over time to assess if morphological changes

have occurred in the ID patterns over time. Each photograph in

the time dataset was labeled with the shark's ID and a time

marker, such as T0, T1, T2, T3, (…), Tn. Time intervals between

consecutive photographs of adult and juvenile sharks were not

standardized (see Table S1). This approach is relevant for the

model's real-world applicability, given that re-sightings of wild elas-

mobranchs are unlikely to occur at regular intervals due to envi-

ronmental factors. However, the time elapsed between

consecutive photographs of neonate sharks was deliberately con-

trolled to be taken within one week. However, some photographs

were not usable due to poor quality, and had to be discarded.

Nevertheless, the time elapsed between two consecutive photo-

graphs was never longer than one month. For instance, significant

pattern changes were expected for neonate epaulette sharks

within the first year post-hatch (Figure 2), and photographs were

taken often and regularly to capture such changes.

F IGURE 1 From the left, typical neonate (a), juvenile (b), and adult (c) epaulette sharks (Hemiscyllium ocellatum).
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2.4 | Photograph enhancement and masking

Expanding on the dataset preparation, both the baseline and time

datasets underwent a cleaning process. This involved removing dupli-

cates (identical photographs) and blurry/low-resolution photographs.

Additionally, any photograph that did not display a dorsal orientation

was excluded. Furthermore, each of the retained photographs was

masked using the free program, Gimp – GNU Image Manipulation

Program (version 21.0; GIMP Development Team, 2019). This

masking technique is further illustrated in Figure 3a,b, where the

visual focus is solely on the shark's silhouette, effectively eliminating

any background distractions. Cropping the image to exclude the back-

ground facilitates the task of the AI model and decreases the amount

of computational power needed. Generally, when processing images

with low computational power (when high-performance computing

[HPC] is not available), it is best to pre-edit the images used for train-

ing and testing. Cropping away the background and flagging identifi-

cation features is more labor intensive but dramatically reduces the

TABLE 1 Comparing the accuracy,
precision, and mean absolute error (MAE)
performances of different deep neural
network models on multiple
combinations of the testing dataset.

Image data Evaluation Model Accuracy Precision MAE

All life stages Image-based EfficientNetB4-Head 47.00% 8.10% 0.53

EfficientNetB4-PEC 41.70% 8.20% 0.583

EfficientNetB4-FDF 44.90% 5.60% 0.551

EfficientNetB4-FDB 56.20% 7.10% 0.438

XGBoost-all patches 90.40% 9.40% 0.096

All life stages Shark-based EfficientNetB4-Head 46.20% 14.40% 0.538

EfficientNetB4-PEC 39.20% 14.80% 0.608

EfficientNetB4-FDF 37.40% 10.60% 0.626

EfficientNetB4-FDB 53.80% 13.30% 0.462

XGBoost-all patches 90.10% 47.20% 0.099

Adult only Image-based EfficientNetB4-Head 71.30% 31.20% 0.287

EfficientNetB4-PEC 75.00% 28.80% 0.25

EfficientNetB4-FDF 23.30% 14.60% 0.767

EfficientNetB4-FDB 65.40% 18.40% 0.346

XGBoost-all patches 85.30% 45.50% 0.147

Adult only Shark-based EfficientNetB4-Head 75.00% 47.10% 0.25

EfficientNetB4-PEC 75.00% 46.20% 0.25

EfficientNetB4-FDF 22.20% 22.20% 0.778

EfficientNetB4-FDB 40.40% 11.10% 0.596

XGBoost – all patches 86.10% �100% 0.139

F IGURE 2 A typical neonate growth and change in pattern morphology in approximately 6 months.
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need for large computational power. This step can be avoided if HPC

is available for image processing.

2.5 | Skin boundary labelling

To accurately train deep learning models without overtraining, images

were randomly grouped into batches of 16 images. The DNN's inter-

nal variables were gradually updated by these batches in an iterative

process. Training an advanced DNN with batches of 16 high-

resolution images (i.e., 5472 � 3648 pixels) would typically require

HPC, which is not readily available. To overcome this issue, four

patches (i.e., body sections) from each shark image were subsampled

(Figure 3c–f). These patches include the head (Figure 3c), pectoral/

gills area (pec) (Figure 3d), the dorsal area just ahead of the first dorsal

fin (FDF) (Figure 3, e), and the dorsal area just past the first dorsal fin

(FDB) (Figure 3f).

By cropping and resizing the original images into four patches of

380 � 380 pixels, the need for HPC is eliminated. These body sec-

tions were chosen based on the experience of researchers and volun-

teers working in the laboratory where animals are routinely identified

for measurements, feeding, and experiments. These four sections are

thought to be the sections with most differences between individuals.

The roLabelImg program (Cgvict, 2017) in Python (Van Rossum &

Drake, 2009) was used to create “boxes” around these body sections

(Figure 3a): The head region starts from the tip of the shark's nose,

and down to approximately three-quarters of the head length before

the beginning of the pectoral region. The pec region starts from the

top of the pectoral fin, behind the gills, to the base of the shark's black

ocellus. The FDF region was designated as the heavily spotted region

between the top of the pelvic fins to the base of the pelvic fins, found

in front of the first dorsal fin. The FDB region was indicated by the

densely spotted region between the base of the first dorsal fin and

the front of the second dorsal fin. Four rotated rectangular boxes

were drawn and tightened around the targeted skin patterns.

Boxes were rotated to align with the direction of the vertebral line,

then the front of each box was marked to indicate the direction

toward the shark's head. This step was important to be able to align

the boxes in the correct order of the respective body sections. This

collection of boundaries was saved and uploaded with the respective

labeled photographs and masks.

2.6 | Image augmentation

In the training phase of the DNN, photographs in the training dataset

were randomly augmented to virtually increase their count and to

avoid over- and undertraining. Each image was randomized with a

series of flips (X-flip and Y-flip), rotations (90�, 180�, and 270�),

Gaussian noise, Gaussian blur, gamma contrast, linear contrast, and

other image manipulations. This image augmentation disturbs the

RGB spectrum while keeping the sharks' skin patterns visually recog-

nizable. This helps with training the model on shark skin patterns,

instead of learning skin colors and color contrasts (Figure 4).

2.7 | Training and testing

The AI model was initially trained and tested using the baseline data-

set. When developing AI models, available photographs are sub-

grouped into training and testing datasets. This process is necessary

to “teach” the model with similarities and differences for distinguish-

ing individuals. From the baseline dataset, photographs of only six

adults, three juveniles, and four neonates were used for training. It is

F IGURE 3 (a) Original image,
(b) image mask, and (c, d, e, f)
four subsampled image patches
(head, pec, the dorsal area just
ahead of the first dorsal fin
[FDF], and the dorsal area just
past the first dorsal fin [FDB]) of
image HO_100_B0P2. These
patches are sections of the

sharks' body: (c) the head, (d) the
area around the gills and pectoral
fins, (e) the dorsal area in front of
the first dorsal fin, and (f) the
dorsal area behind the first
dorsal fin.
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important to note that not all the adults, juveniles, and neonates were

shown during training. This process ensured that, when tested, the

model looked for features within a new photograph, rather than

remembering the previously seen the photographs themselves

(Schneider et al., 2022). The remaining photographs not shown during

training were grouped in the testing dataset, together with photo-

graphs of the remaining two adults, one juvenile, and one neonate.

Furthermore, the time dataset was only used for the model testing.

After the model had been trained on the basic task of distinguishing

individual sharks, it was tested by presenting temporally consecutive

photographs of the same shark from the time dataset. The purpose of

this additional step was to test whether the morphology of the same

shark changes through time enough so that the shark was not as dis-

tinguishable as it would be if no changes had occurred.

2.8 | Model development

The DNN model used in this study was based on the EfficientNetB4,

which is a CNN with optimum depth, width, and resolution scaling,

introduced by Tan and Le (2019). Based on the benchmarking avail-

able in the Keras website (Chollet & others, 2015), EfficientNet and

EfficientNetV2 are the most accurate models that offer small to

extra-large architectures with 29 to 479 MB size ranges. Among them,

EfficientNetB4 was chosen as its 75 MB architecture fits well into an

Nvidia GeForce RTX 2080 GPU processor. To train the proposed

model with the limited baseline dataset (eight adults, four juveniles,

and five neonates), a transfer learning strategy was employed. The

EfficientNetB4 model was pre-trained with 14,197,122 existing

images of 1000 annotated objects in the ImageNet (Deng

et al., 2021). The bottom layers of the pre-trained model were then

retained, and the top layer replaced with a customized new top. Dur-

ing the training, all 17,673,823 pre-trained weights of the bottom

layers were frozen, and only the 121,886 weights of the new top layer

received training from the augmented images dataset.

The trained bottom layers were duplicated to form two identically

frozen EfficienNetB4 models, each accepting an image patch at their

inputs (Figure 5). The output of both models passed through an aver-

age pooling block to extract two image representations of the two

input patches with a numerical vector that simply represents/encodes

its relevant image. The two vectors were then concatenated into a

single vector and passed through two subsequent dense layers. The

first dense layer consisted of 32 fully connected neurons with recti-

fied linear unit (ReLU) activation function. The second dense layer

comprised one neuron with sigmoid activation to output a single

probability-like number between 0 and 1. This number is called the

similarity index, and it shows the probability of the two input images

being the same shark (1) or not (0). The larger the value, the higher

the probability of two patches having similar skin patterns. The simi-

larity index was adopted to identify single sharks by comparing the

similarity indices returned during the analysis. Due to the limitation of

only having 20 different sharks, the model was asked “Are these two

sharks similar?” instead of “What is the ID of this shark?” This

approach has been referred to as the similarity network approach and

has been tested on several species, with photographs from open-

access datasets (Schneider et al., 2022).

2.9 | Model assembling process

Using the four different patch types in the image dataset (i.e., head,

pec, FDF, and FDB), four independent AI models were trained. With a

F IGURE 4 An example of random image augmentations for HO_100_B0P1. (a) Original head, pec, dorsal area just ahead of the first dorsal fin
(FDF), and dorsal area just past the first dorsal fin (FDB) patches of the shark, and (b) head, pec, FDF, and FDB with random augmentations.

1578 LONATI ET AL.FISH
 10958649, 2024, 6, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1111/jfb.15887 by Jam
es C

ook U
niversity, W

iley O
nline L

ibrary on [17/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



further innovative step, the four AI models were ensembled (e.g., a

combination of multiple algorithms) into a single decision-making

model. The chosen model was XGBoost ensemble, which has recently

attracted more attention as a model assembling method (Jahanbakht

et al., 2023). The four similarity indexes of the AI models were

concatenated into X, which was then inputted into an XGBoost model

and represented as a collection of M decision trees (Figure 6). The

optimum value is automatically detected by the algorithm during

the data fitting process (model training). Each decision tree i receives

similarity indexes and returns Ti X, ri�1ð Þ, where ri�1 is the residual out-

put from the previous tree. The overall output of the XGBoost regres-

sion ensemble was then calculated as follows (Jahanbakht

et al., 2023).

final similarity index¼
XM

i¼1
aiTi X, ri�1ð Þ

���
r0¼0

To infer an XGBoost model, images of two sharks were needed

(either the same or different individuals). The head, pec, FDF, and

FDB patches were extracted for each image, and the pairs fed into

their relevant EfficientNetB4 model. This process generated the calcu-

lated final similarity index at the output of the XGBoost model. Any

value greater than 0.5 (on a 0–1 scale) means that the input two

images belong to the same shark; otherwise, they belong to different

sharks. The process was named “image-based evaluation”: one image

of one shark is compared to another image of another shark. How-

ever, in this case, multiple images of the same shark are available, and

a better-performing process can be implemented. If K1 images are

confidently taken from shark 1 and K2 images are taken from shark

2, then K1�K2 is the number of different image pairs that can input

the XGBoost model one by one. This resulted in K1�K2 different final

similarity indexes that were averaged to a number between 0 and

1. In contrast to the previous image-based evaluation, this process is

called “shark-based evaluation.”

3 | RESULTS

3.1 | Dataset organization

The image-based evaluation method was employed, where the simi-

larity score is the result of the comparison between one image of one

shark with only one other image of a different shark. The accuracy for

the EfficentNetB4 – head/pec/FDF/FDB ranged between 47.0% and

56.2% accuracy, with low precision below 10% (Table 1: all life stages,

F IGURE 5 The proposed
deep neural network, based on
the EfficientNetB4 architecture,
which receives two image
patches, and returns their
calculated similarity index.

F IGURE 6 Merging the

outputs of four independently
trained deep neural network
models of Figure 5 (on head, pec,
dorsal area just ahead of the first
dorsal fin (FDF), and the back
dorsal fin (BDF), into a single
XGBoost regression ensemble.
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image-based). XGBoost showed a better performance (approximately

90% accuracy) as it combined all independent AI results into the final

accurate decision on similarity or dissimilarity. Despite the accuracy

increased by XGBoost, the precision was still lower than 10% (Table 1:

all life stages, image-based). This suggests that, although the approach

is correct, there might be issues with the distinguishability of individ-

uals, possibly arising from having only one image per shark with which

to train.

To improve the precision of the models the shark-based evalua-

tion was applied to the first version of the models in the previous sec-

tion. The shark-based evaluation used the same datasets for training

and testing but compared two groups of images (each group contain-

ing images of two different sharks), instead of one image per shark.

Each group was previously classified to the correct ID in the training

and testing datasets. All models increased precision by averaging over

the multiple image pairs, with the XGBoost model as the most optimal

with scores of 90% accuracy and 47.2% precision (Table 1: all life

stages, shark-based).

3.2 | Testing the model: Can the model distinguish
individuals?

The receiver operating characteristic (ROC) curves show the perfor-

mance of the models when distinguishing individuals (Figure 7). By

adopting the similarity learning approach, the model was tested with

the question “Are these two sharks similar or dissimilar?” rather than

the question “Who is this shark?” This approach simplifies and

streamlines the task by adopting an intuitive solution and asking to

learn to distinguish individuals rather than learning their

ID. Furthermore, this approach allows for any new animals to enter

the population without having to re-train the model to include a new

ID (Schneider et al., 2022). In Figure 7, the area under the curve (AUC)

values range from 0 to 1 and represent how well the model distin-

guishes two images.

When testing models on pairs of neonate sharks, the AUC values

ranged from 0.50 for the model focusing on the pec area, to 0.40 for

the XGBoost model (Figure 7a, neonates). The low AUC values indi-

cate that there is no model available that is effective enough to distin-

guish neonate sharks from each other. The inability of the model to

distinguish immature life stages is consistent with the experience of

researchers who were tasked with the ID of neonate sharks. After

repetitive ID sessions and several hours of sorting photographs,

researchers succeeded in matching the ID to the right individual,

mainly referring to the head area. Similarly, researchers were chal-

lenged with the ID of juvenile sharks (Figure 7a, juveniles and neo-

nates). Models for juveniles showed some AUC improvement over

neonates, ranging from 0.72 to 0.50, but were still considered to be

poor determinants for differences among sharks. Overall, no model

could reliably distinguish immature sharks from each other.

Alternatively, models trained on all life stages and tested on adult

sharks showed considerable promise in the identification of

F IGURE 7 (a) Receiver operating characteristic curve for models trained on all life stages, and (b) on adults only. The area under the curve
(AUC) represents the degree of separability between two classes (pairs of similar and dissimilar sharks in our case). The closer the value of AUC to
1, the better the model is at distinguishing two sharks from each other.
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differences between adult individuals. The head model and the

XGBoost model retained the strongest AUC values, 0.86 and 0.90,

respectively (Figure 7a, adults). The least accurate model was the FDF

(0.56) model, followed by the FDB model (0.78) (Figure 7a, adults).

3.3 | Training on adults-only, image-based, and
shark-based methods

Because the model is not able to differentiate immature individuals,

the training of the first version of the models could have been

affected by the presence of images that cannot be distinguished by

the model. The presence of neonates and juveniles in the training

datasets might have “confused” the model in the training phase. For

this reason, neonates and juveniles were removed from the training

dataset, and the second version of the models were trained on the

adult sharks only. The precision increased from 9.4% of the previous

image-based model to 45.4% when the model was trained on adults

only (Table 1: adult only, image-based). However, the accuracy of the

model decreased from 90.4% to 85.3% because of the smaller training

dataset including only adult sharks. The best results overall were

achieved when introducing the shark-based evaluation to the model

trained on adult sharks, reaching 86% accuracy and nearly 100% pre-

cision (Table 1: adult only, shark-based). With this approach, the ROC

curves for the head and pec models have AUC values of 0.93 and

0.83, respectively, while the XGBoost model seems to have the best

results and an AUC value of 0.94 (Figure 7b). Intuitively, because the

training for this last set of models was done on adults only, the model

can only be tested on adult sharks.

3.4 | Results of the temporal analysis

Finally, with the same AI model design, the time dataset was used to

assess substantial changes in the morphology by using images of the

same adult shark through time. Each time step (T1, T2, T3, and T4)

was measured against baseline images of the same shark, which were

taken after all the photographs for the time dataset (Table S1). The

analysis was limited to adult sharks, as the previous results have

shown the AI model could not reliably distinguish juveniles and neo-

nates from each other. The spot patterns of adult epaulette sharks are

thought to be permanent, but the long-term stability of patterns was

never tested for adults, juveniles, and neonates. Results from the deep

learning model confirm that the pattern morphology of adult sharks

remained stable through the duration of the study (�21 months). The

same model could be used with longer time intervals between photo-

graphs. Although a historical database of photographs could be

insightful of longer-term morphological changes, this study suggests

that, once adult maturity has been reached, patterns can stabilize and

remain the same through the lifetime of epaulette sharks. The effec-

tiveness of the applied deep learning model is most evident with

larger, historic database of photographs. In the case of long-term data-

base, this model could be applied across thousands of individuals and

recognize small changes in morphology through time. Such changes

would be represented by a small decrease in similarity score, indicat-

ing that the animal seems to be the same individual, but something

has changed in its morphology. The best-performing head, pec and

XGBoost models were trained on adults only (Figure 8a) and on all

sharks (Figure 8b). Each model returned similarity indexes above 0.5,

but as expected, the models trained on adults only had better perfor-

mance. Similarity values above 0.5 suggest that spot patterns do not

change significantly. In terms of the performance of the models, when

trained on all age groups (Figure 8b), pec is a better indicator of age's

effect on skin pattern. When models are trained with adult sharks

only (Figure 8a), the head area seems to be a better indicator of differ-

ences through time. XGBoost was determined to be a reasonable

choice in both cases.

4 | DISCUSSION

This study is the first to develop a photo ID protocol for epaulette

sharks, contributing to the small list of species that can be effectively

studied using photo ID. The protocol outlined in this study includes a

series of innovative solutions in the field of applied AI to photo

ID. First, the deep learning model was effectively trained on a small

dataset of labeled images, the model was developed with a regular

computer with standard computational power, and the model used the

similarity network approach to ID individual sharks, overcoming the

typical close-population assumption of many photo ID models. Further-

more, the protocol was used to assess the reliability of patterns for

immature life stages, and to detect changes in morphology through

time. Because of the small number of images required, the proposed

protocol provides a cost- and time-effective tool to test

the applicability of photo ID on new species of elasmobranchs and per-

haps teleost fishes and cetaceans. The same method can be useful for

species like manta rays and whale sharks that have been surveyed with

photo ID for decades (Harty et al., 2022; McKinney et al., 2017). For

instance, this new approach provides a tool to validate whether skin

patterns change over long-term studies by using the similarity network

approach on large databases of photographs collected through time.

The long-term stability of ID patterns can also be confirmed by pairing

photographs with genetic samples of individuals (Gubili et al., 2009),

but genetic methods are not always logistically or financially possible.

However, the reliable identification of individuals with morphology and

the long-term stability of such morphological traits are fundamental

requirements for population studies using photo ID as a non-invasive

capture mark recapture method. The protocol proposed in this study

represents an applicable set of solutions to photo ID and AI applications

to animal identification and population studies.

4.1 | A step-by-step approach to elasmobranch
photo ID

This study presents a practical example to test photo identification for

a species that has not been previously studied using this approach.

This includes identifying features for ID, photographing sharks,
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labelling and editing photographs, and setting up a semi-automated

process to organize photographs by ID with high accuracy. Although

current photo ID projects use similar methods (Gómez-Vargas

et al., 2023; Pierce et al., 2019; Schneider et al., 2022), only a few

studies outline the step-by-step process of testing the method, com-

piling a database, and automating the ID process (Schneider

et al., 2022). Additionally, only a few studies offer solutions that can

be easily customized for different species and hypothesis

(Gómez-Vargas et al., 2023). Here we present a flowchart (Figure 9) to

visualize and exemplify the protocol, from photographs, to model

development, to final similarity index classifying animals by ID.

4.2 | Data preparation: Collecting, editing, and
organizing photographs

1. To test if the species has unique identification features, photo-

graphs need to be collected first for a few individuals (Pierce

et al., 2019). If available, photographs of different life stages should

be collected to test reliability of patterns across ontogeny. These

photographs can be classified in the baseline folder.

2. Existing photographs collected through time can be classified in

the time folder. This is used to test the stability of features through

time (Marshall & Pierce, 2012; McCoy et al., 2018; McKinney

et al., 2017). In this study, photographs of the captive animals were

collected as standard research protocol. For wild populations the

collection of photographs through time requires high residency

and/or known aggregation sites.

3. Photographs are prepared as described in the Methods

section and visualized in the flowchart (Figure 9). Importantly, the

skin boundary labelling step not only allows for easier and faster

model development, but it can identify which sections of the body

are most indicative for ID and which sections may be most

affected by changes through time.

4.3 | Model development: Tasks 1, 2, and 3

1. Due to the highly time-consuming task of sorting photographs, it is

beneficial to develop an automated or semi-automated model for

individual recognition, even with a small dataset of photographs

and only a few individuals. For instance, once the backbone of the

model is in place, improvements and new individuals can always be

added, and the model can be easily re-trained when needed. This

can save time, allow for re-allocation of resources, and increase

productivity for researchers.

2. Task 1 presented in the flowchart (Figure 9) shows the transfer learn-

ing approach, a fundamental step used to pre-train the model when

only a small dataset of photographs is available. Task 2 represents

the standard animal identification task, which is performed by using

the similarity network approach and the XGBoost ensamble model

(see Methods sections for details on model development). Finally, the

same approach is used for task 3: “Do the spots change?”

As each species is unique, the protocol suggested in this study

can be customized and further improved in its applications. The con-

trolled environment of this study represents both a strength and a lim-

itation. The known ID of individuals, the existing record of labeled

photographs, and the quality of the photographs were important fac-

tors to be able to develop the model. On the other hand, although the

model was trained to work with a small dataset and with different

options of photograph quality, the real-life success of this method

F IGURE 8 (a) Similarity
indices of the image pairs of the
same sharks through time (T0 to
T3) for adult-only, and (b) all life
stages. A 50% similarity threshold
is represented by a dotted line,
where any AI output above this
line means that image pairs
correctly belong to the same

shark.
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F IGURE 9 Flowchart that shows the protocol outlined in the study. From data preparation to the development and training of the models,
with detailed sections on the EfficientNetB4 and XGBoost ensemble models.
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needs to be tested by applying the protocol to a wild population of

epaulette sharks.

4.4 | Advancements in AI applications for photo ID

The application of AI through customized deep learning models is

becoming increasingly important to process and analyze long-term

datasets (Meekan et al., 2020; Schneider et al., 2022; Winton

et al., 2023). Establishing a semi-automated classifier early into the

stages of a project is most beneficial in saving time when later

the large volume of photographs makes visual identification more

challenging. However, new photo ID projects face certain challenges

in developing AI models to ID individuals from limited photographs.

First, new projects, especially when working with wild populations,

may have a limited number of photographs of the same animal for

training the AI on ID features (Christin et al., 2019; Miele et al., 2021).

Second, projects might not have access to powerful image classifiers

or HPC technology, limiting the applications of AI technology. Finally,

when new individuals are added to the population, models need to be

fully re-trained (Schneider et al., 2022). The accuracy of the DNN

model developed in this study was a stepwise process largely attrib-

uted to the efficacy of the similarity network method and XGBoost

ensemble model, resulting in more than 85% accuracy and 100% preci-

sion when identifying individuals from a small database.

4.5 | The XGBoost ensemble model: training AI
models with standard computational capabilities

The XGBoost approach used in this study is particularly advantageous

for new photo ID projects that may lack access to HPC, as it allows

for separate training of each model on standard computers. As a

result, high-precision AI models can be accessible to smaller photo ID

projects and feasible for smaller Non-Governmental organisations and

community-lead initiatives, which often have limited resources

(Chin & Pecl, 2018). The implementation of the XGBoost ensemble

model, which integrates outputs from four independently trained

models, each focusing on different cropped sections of the shark's

body, significantly optimized the ability of the DNN to distinguish

adult individuals with high accuracy. The XGBoost model can assess

model performance on each body section and assemble the indepen-

dent models by ranking their respective performances. For instance,

models with better performance are indicative of which body sections

are most distinct across individuals, a valuable insight for cases where

photographs capture only parts of an animal's body (Andreotti

et al., 2018; Armstrong et al., 2019; Pierce et al., 2019).

4.6 | The similarity network approach: detecting
changes through time and adding new individuals

The DNN model was trained to distinguish individual epaulette sharks

through a similarity network approach, assessing how similar two

individuals are, and using this metric to match photographs with the

correct ID (Schneider et al., 2022). Through this method, the model

can be presented with new individuals, evaluating them as different

from any shark it has previously learned, thereby identifying them as

new sharks. Additionally, the comparison of similarity scores allows

for the evaluation of morphological changes in a target species by

comparing images from different time periods and analyzing the

resulting similarity scores. The similarity network approach is a crucial

technological advancement for addressing the key requirement for

long-term photograph identification: patterns and morphology must

remain stable over time for consistent re-identification of individuals

(Ferreira et al., 2020; Marshall & Pierce, 2012).

4.7 | Using AI to identify morphology changes
through time

The best-performing version of the DNN model confirmed that adult

epaulette sharks maintained their patterns throughout the study, as

the model performance remained high when identifying individuals

from consecutive photographs in time. Changes in patterns through

time would have appeared as a substantial change in performance

score for this task. Although the efficiency of this process is yet to be

validated with wild populations, it is important to consider the effect

that temporal changes in morphology could have in the training of an

AI model. If changes in the ID patterns do occur, the ease of re-

identification through time might be affected (Pierce et al., 2019).

Additionally, if morphology does change in time, and training datasets

are assembled with temporally consecutive photographs, the training

of the model might be affected, and the model might not be able to

accurately learn the similarities between individuals. For this reason,

the similarity network approach proposed in this study can be applied

by comparing photographs of the same individual through time and

testing the performance of the model as a proxy of morphological sta-

bility. Overall, training on multiple photographs taken at the same time

is a better approach compared to training on temporally consecutive

photographs. When possible, photographs taken at the same time

offer multiple examples of different lighting and angles from which

models can reliably learn (Christin et al., 2019). While this is the best

approach to learning features, there are other methods, such as one-

shot learning, to train a model with only one photograph (Schneider

et al., 2022). For adult individuals, patterns need to be distinguishable

and persistent through time (Marshall & Pierce, 2012), and these

assumptions need to be tested for juveniles and immature individuals,

which might have significantly different morphologies compared to

adults (Bellodi et al., 2023; Fu et al., 2016).

4.8 | Photo ID for subadults and immature life
stages

When the identification protocol used on adult epaulette sharks was

applied to neonates and juveniles, ID was much more challenging.

Visually distinguishing epaulette sharks at early life stages was
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difficult, and therefore poor model performance across early ontogeny

was expected (Christin et al., 2019). Consequently, photographs of

juveniles and neonates had to be excluded from the training dataset.

The exclusion of immature life stages from the training dataset raises

the question of whether photo ID is suitable for other species that

experience significant ontogenetic morphological changes during

development (Ferreira et al., 2020; Marshall & Pierce, 2012). For

instance, the Indo-Pacific leopard shark (Stegostoma tigrinum), also

called zebra sharks due to their skin patterns during the juvenile stage

(Dahl et al., 2019), may be a good candidate to test the reliability of

patterns for individual juveniles. As photo ID can only be performed

with reliable patterns, and species might experience significant

changes from their juvenile to the adult stage, it is important to con-

sider removing those stages to prevent poor model performance. On

the other hand, the protocol outlines in this study could be adapted to

systematically test the reliability of patterns over ontogeny. When fre-

quent photographs are available for each juvenile shark, AI could be

trained to detect small changes through time, until changes become

less and less revenant and patterns stabilize in the adult form.

5 | CONCLUSION

Initially, the assessment of baseline conditions necessary for photo ID

was conducted, followed by the development of an AI model to semi-

automate the photograph sorting process. The resulting deep learning

model represents a seamless integration of established methodologies

and innovative solutions, effectively identifying adult sharks and asses-

sing the stability of their patterns over time. This study introduces a

novel approach to developing a deep learning model by successfully

navigating the challenges posed by small training image datasets and

the absence of HPC capabilities. The solutions outlined in this study are

replicable, offering a framework that can be applied to test the tempo-

ral stability of identification features for other species. This is relevant

to studies currently using photo ID or exploring its applicability to new

species. The next step in applying this method involves testing it with

different species, varying database, and wild populations, ultimately

proving its usefulness across a broader range of elasmobranch species.

Tests should include both projects with long-term, large databases and

projects focusing on species that change morphology over time.
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