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Abstract As global temperatures increase, fish popula-

tions at low latitudes are thought to be at risk as they are

adapted to narrow temperature ranges and live at temper-

atures close to their thermal tolerance limits. Behavioural

movements, based on a preference for a specific tempera-

ture (Tpref), may provide a strategy to cope with changing

conditions. A temperature-sensitive coral reef cardinalfish

(Cheilodipterus quinquelineatus) was exposed to 28 �C
(average at collection site) or 32 �C (predicted end-of-

century) for 6 weeks. Tpref was determined using a shut-

tlebox system, which allowed fish to behaviourally

manipulate their thermal environment. Regardless of

treatment temperature, fish preferred 29.5 ± 0.25 �C,
approximating summer average temperatures in the wild.

However, 32 �C fish moved more frequently to correct

their thermal environment than 28 �C fish, and daytime

movements were more frequent than night-time move-

ments. Understanding temperature-mediated movements is

imperative for predicting how ocean warming will influ-

ence coral reef species and distribution patterns.

Keywords Behavioural thermoregulation � Temperature

preference � Temperature sensitivity

Introduction

Global mean sea surface temperatures are predicted to

increase 2.6–4.8 �C by the end of the century (Collins et al.

2013) and may affect some locations and species differ-

ently. Given that extreme latitudes, such as the equator and

poles, normally experience little variation in daily and

seasonal temperatures (Somero 2002; Hoegh-Guldberg

et al. 2007; Tewksbury et al. 2008; Lough 2012), resident

species may be adapted to a narrow range of temperatures

(Pörtner and Farrell 2008, Pörtner and Peck 2010;

Tewksbury et al. 2008). Adaptation to and operating within

a narrow temperature range can allow species to minimize

maintenance costs and increase fitness (Pörtner and Farrell

2008), but operating outside these temperature ranges can

come at a cost and may decrease overall fitness. With

predicted temperature increases, more energy may be

required to maintain daily processes, which may have

deleterious effects on performance and survival (Pörtner

and Peck 2010). Thus, populations near the equator and

poles are expected to be at increased risk as sea surface

temperatures rise. Species living at these latitudes will need

to acclimate or adapt, redistribute to latitudes or depths

where temperatures may be more forgiving, or risk disap-

pearing from some areas completely (Perry et al. 2005).

Ectotherms, such as fish, will be at risk from changing

environmental conditions because, for most, core body

temperatures reflect local thermal environments. Beha-

vioural thermoregulation, a form of phenotypic plasticity,

may allow some species or populations to reduce or miti-

gate the deleterious impacts of changing environmental
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temperatures (Ward et al. 2010; Thumus et al. 2012;

Johansen et al. 2014). Fish may use movement to maintain

an internal temperature that closely resembles their pre-

ferred temperature (Tpref) (Neill et al. 1972; Schurmann and

Steffensen 1991), which can reduce daily maintenance

costs (Killen 2014) and therefore influence critical bio-

logical processes (Pörtner and Farrell 2008), potentially

leading to increased performance, fitness, and survival.

Indeed, an organism’s Tpref may theoretically reflect its

optimum temperature (Topt) for aerobic performance as

well as its distribution range. However, some tropical

species already occur at latitudes where maximum tem-

peratures are close to their Topt (Rummer et al. 2014).

These populations may temporally use deeper, cooler

habitats to reduce metabolic costs. Thermal preference may

therefore influence species’ distribution patterns in several

ways through habitat selection (Pörtner and Farrell 2008;

Gardiner et al. 2010) and modification to depth and/or

latitude ranges (Perry et al. 2005; Grebmeier et al. 2006;

Pörtner and Peck 2010).

Temperature preference has been investigated in some

temperate fish species (Fry 1947; Brett 1952; Kelsch and

Neill 1990; Johnson and Kelsch 1998; Killen 2014), but no

study to date has explored this trait in tropical coral reef

fish species. Cardinalfishes (Apogonidae) are known as

temperature sensitive (i.e., limited capacity for acclimation

and/or limited temperature tolerance range) (Nilsson et al.

2009, 2010; Gardiner et al. 2010; Rummer et al. 2014) and

thus may be good candidates for investigating temperature

preference. It is already known that some cardinalfishes are

unable to acclimate numerous morphological and/or

physiological traits, even over days to weeks (e.g., gill

morphology, see Bowden et al. 2014; aerobic scope, see

Rummer et al. 2014; Gardiner et al. 2010; Nilsson et al.

2010), to the elevated temperatures expected under global

climate change. Furthermore, cardinalfishes have repeat-

edly been shown to lose condition and reduce physiological

performance with minor temperature changes (Gardiner

et al. 2010; Nilsson et al. 2010; Rummer et al. 2014). Using

the five-lined cardinalfish (Cheilodipterus quinquelinea-

tus), we aimed to investigate whether temperature-sensitive

coral reef fishes can utilize behaviour to move to areas of

suitable temperatures, even after they have been pre-ex-

posed to higher temperatures for prolonged periods of time.

Most cardinalfishes, including C. quinquelineatus, exhibit

nocturnal behaviours, actively foraging over sand and reef

at night (Chave 1978; Marnane and Bellwood 2002) and

inhabit specific resting sites during the day (Greenfield and

Johnson 1990; Gardiner and Jones 2010) when tempera-

tures in shallow reef habitats may rise due to sun exposure

and tidal level (Craig et al. 2001). Therefore, a second aim

was to determine whether a species’ thermal profile reflects

its daytime or night-time habitat.

Materials and methods

Animal care and experimental temperature

treatments

Cheilodipterus quinquelineatus were collected using hand

nets in shallow coral reef lagoons near Lizard Island

(14�4000800S, 145�2703400E), Northern Great Barrier Reef,

Australia, in January 2014 when temperatures were

approximately 28 �C. Fish were then transported to the

Marine Aquaculture Research Facilities Unit (MARFU) at

James Cook University in Townsville, Queensland, Aus-

tralia. Groups of cardinalfish of similar size (t test,

t17.24 = -1.01, p = 0.32) were held at either 28 �C
(n = 8) or 32 �C (n = 10) to account for end-of-century

predictions (Collins et al. 2013). To reach 32 �C, aquarium
temperatures were increased at a rate of 0.5 �C d-1 using a

5000 W heater until the target temperature was reached.

Both groups were maintained at treatment temperatures for

a minimum of 6 weeks to ensure that any acclimation

processes were complete (Guderley and Gawlicka 1992).

Fish were maintained under a 12:12 photoperiod and were

fed commercial pellets and newly hatched Artemia spp.

twice daily to satiation. However, fish were fasted for 24 h

prior to experimental trials to ensure a post-absorptive state

that maximized energy available for performance (Niimi

and Beamish 1974).

Temperature preference equipment

The Tpref was determined for each fish by placing a single

individual into a shuttlebox developed by Schurman and

Steffensen (1991) and Peterson and Steffensen (2003). In

brief, the shuttlebox is a two-chamber PVC aquarium with

the bottoms of each chamber made from transparent

plexiglass (Ø 35 cm). Each chamber is cylindrical

(Ø 34.5 cm), and the two chambers are joined at the middle

with a 50-mm-wide passage allowing the fish to move

freely between chambers. One chamber was consistently

maintained 1 �C cooler than the other using two chillers

and a 5000 W heater. This differential was chosen because

it is large enough to prompt movement between chambers,

as determined from preliminary observations on this spe-

cies. Prior to each trial, temperatures inside the chambers

were set to the fish’s treatment temperature (28 or 32 �C),
and a single fish was placed in one chamber of the shut-

tlebox and permitted to familiarize with the system for

1.5 h. The allotted time for the fish to ‘learn’ the system

was based on observed reaction times to the passageway

between the chambers.

When a fish entered the ‘warm’ chamber, the tempera-

ture of the entire system increased at a rate of
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1.5–2 �C h-1, and when the fish entered the ‘cool’ cham-

ber, the temperature of the entire system decreased at the

same rate, while maintaining a 1 �C difference between

chambers. By moving between tanks, each fish was able to

control the temperature of its environment, and therefore

its body temperature.

Throughout each trial, temperature sensors recorded

values to thermostats linked to a computerized software

system, and the fish’s position was analysed using Loli-

Track (Loligo Systems, Tjele, Denmark). Depending on the

real-time position of the fish, the computer and purpose-

written software (Labtech Notebook Pro, Laboratories

Technology Corp., Andover, MA, USA) would automati-

cally turn on or off the corresponding heating or cooling

reservoir loop. To ensure the fish was detectable by the

tracking software during both daytime and night-time

hours, infrared lights were used to illuminate the fish from

underneath, which created a strong contrast between the

chamber background and the fish. In addition, a small lamp

was used at night-time to mimic moonlight and to allow the

fish to navigate between chambers.

Data analyses

The Tpref data were analysed by calculating the proportion

of time each fish spent at each temperature using one 5-h

timeframe within each daytime and night-time period for

each individual. The timeframes were chosen to ensure that

calculations of night-time Tpref and daytime Tpref were

adequately separated. One replicate of each daytime and

night-time period was used for each fish in the analysis.

Means were then compared between the fish from the 28

and 32 �C treatment temperatures, and given that this

species exhibits nocturnal activity patterns, comparisons

were also made between night-time and daytime periods.

The differences in temperature preference (Tpref) between

treatment temperatures, day/night-time periods, and inter-

actions between the two factors were analysed using a two-

way ANOVA and Holm–Sidak post hoc tests (a = 0.05).

This was also done for chamber movements and selected

temperature ranges following log10 transformations.

Chamber movements were defined as the movement from

one chamber to the other, and the selected temperature

range was characterized as the difference between the

maximum and minimum temperatures experienced by each

fish. All assumptions were met for analyses, and all results

are presented as mean ± SE unless otherwise stated.

Finally, to confirm that Tpref results were not a consequence

of random or lack of movements, simulated trials were

completed following identical system settings with a mock

28 �C fish and then compared to 28 �C fish data. Simulated

trials confirmed significantly different Tpref between the

mock fish and treatment fish (two-way ANOVA,

F1,15 = 6.35, p\ 0.05). Within the mock trial, as expec-

ted, there was no difference between day and night

(F1,15 = 0.00, p = 0.95).

Results and discussion

Rising ocean temperatures are a major threat to thermally

sensitive species, particularly those with little or no

capacity for thermal acclimation. The temperature-sensi-

tive C. quinquelineatus preferred 29.5 ± 0.25 �C (Fig. 1a),

regardless of diel cycle (F1,32 = 0.04, p = 0.85) or pro-

longed exposure to present-day or elevated temperatures

(F1,32 = 0.06, p = 0.80). This preferred temperature is

close to the current average summer temperature that this

population experiences in the wild, suggesting a possible

evolutionary selection for temperatures that optimize per-

formance and survival. Temperature adjustments (i.e.,

number of chamber movements, Fig. 1b) were more

numerous in individuals from 32 �C (F1,32 = 5.12,

p\ 0.05) and during the daytime for both treatment groups

(F1,32 = 4.32, p\ 0.05). The interaction effect between

time of day and treatment was significant, and post hoc

tests revealed that the daytime selected temperature ranges

were wider than night-time ranges within 32 �C fish

(Fig. 1c, p\ 0.05). Furthermore, the selected temperature

ranges were wider in 28 �C than in 32 �C fish during the

night-time periods (p\ 0.05), but were similar between

daytime periods. These results may indicate a greater

urgency for fish to regulate their body temperature under

thermal stress, when metabolic demands are elevated (see

Rummer et al. 2014), and when they are further from their

optimum temperature, and suggests that this species, and

perhaps other thermally sensitive confamilials, may relo-

cate to cooler habitats as temperatures continue to increase

under ocean warming.

The difference between movement of schools of fish and

lone fish may provide an explanation for our observation of

more frequent movements in the individual fish examined

in this study during the daytime, as many factors affect an

organism’s movement and activity patterns within their

natural habitats and ecosystems. During the day, nocturnal

species such as C. quinquelineatus may be more vulnerable

to predation if conditions require them to move away from

their sheltered microhabitats (Marnane and Bellwood

2002). Indeed, fish may have to make trade-offs between

their preferred thermal environments and other important

factors such as hypoxia, resource availability (e.g., shelter

or forage), as well as predation risk. Species’ social

structure may also play a role in determining activity

movement patterns. This has been demonstrated in the wild

for C. quinquelineatus during both day and night, as

grouped cardinalfish remain at single resting sites and
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display high site fidelity during the daytime (Kuwamura

1985; Marnane 2000), but lone cardinalfish move fre-

quently between sites, even over 20–50-m distances during

daytime hours, potentially searching for a future mate

(Rueger et al. 2014). In the wild, ecosystem interactions

(biotic and abiotic) and social structure of the species can

influence behaviour; however, temperature will undoubt-

edly affect the fish activity and movement.

Evidence suggests that many coral reef fish species have

limited capacity for acclimation to increasing temperatures,

whichmay result in greater stress on physiological processes

impacting body size, condition, growth, swimming perfor-

mance, and fecundity. By moving to more suitable habitats

by latitude or at a local scale (i.e., around the reef, within

microhabitats, or with depth), behavioural thermoregulation

offers species an alternative strategy to ease some of the

constraints that future elevated temperatures may have on

physiological processes. However, temperature-mediated

movements could shift species distributions and ultimately

limit acclimation and selection of thermal physiology, as

suggested in other ectotherms such as lizards (Buckley et al.

2015). Over 360 tropical coral reef fish species from 55

families have already been shown to be expanding their

distribution ranges to higher latitudes (Feary et al. 2014).

While this is a more positive alternative to species disap-

pearing altogether, an influx of new species into an estab-

lished ecosystem may also cause dramatic changes in

ecosystem function, species abundance and diversity, and

resource availability (Verges et al. 2014; Feary et al. 2014).

As climatic changes persist, many more tropical species

may begin to expand their latitudinal distribution ranges.

Our results demonstrated that this species exhibited the

same preferred temperature regardless of exposure to

increased temperature. This provides a compelling expla-

nation for the numerous species already showing distribu-

tional range shifts. With a greater understanding of

temperature preference, we can use this knowledge as a

tool to predict how species distributions will change and

respond to ocean warming.
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bFig. 1 Boxplots representing a temperature preference (Tpref),

b chamber movements per 5-h trial, and c the selected range of

temperatures for fish from the 28 and 32 �C temperature treatments.

The dotted lines represent the minimum and maximum temperatures

any one fish experienced during all trials. The boxes represent first

and third quartiles, and the whiskers (errors) represent the minimum

and maximum values outside of outliers. Outliers are solid lines with

a closed circle. Within each box, median (dashed line) and mean

(solid line) values are included. Daytime values are in light (yellow)

boxplots. Night-time values are in dark (blue) boxplots
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