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Coral reef fishes and the ecosystems they support represent some of the most biodiverse

and productive ecosystems on the planet yet are under threat as they face dramatic

increases in multiple, interacting stressors that are largely intensified by anthropogenic

influences, such as climate change. Coral reef fishes have been the topic of 875 studies

between 1979 and 2020 examining physiological responses to various abiotic and biotic

stressors. Here, we highlight the current state of knowledge regarding coral reef fishes’

responses to eight key abiotic stressors (i.e., pollutants, temperature, hypoxia and ocean

deoxygenation, pH/CO2, noise, salinity, pressure/depth, and turbidity) and four key

biotic stressors (i.e., prey abundance, predator threats, parasites, and disease) and discuss

stressors that have been examined in combination. We conclude with a horizon scan to

discuss acclimation and adaptation, technological advances, knowledge gaps, and the

future of physiological research on coral reef fishes. As we proceed through this new

epoch, the Anthropocene, it is critical that the scientific and general communities work

Fish Physiology. https://doi.org/10.1016/bs.fp.2022.04.011

Copyright © 2022 Elsevier Inc. All rights reserved. 1

ARTICLE IN PRESS

https://doi.org/10.1016/bs.fp.2022.04.011


to recognize the issues that various habitats and ecosystems, such as coral reefs and the

fishes that depend on and support them, are facing so that mitigation strategies can be

implemented to protect biodiversity and ecosystem health.

1 Introduction

Coral reef fishes represent the most speciose assemblage of vertebrates on the

planet today (Hixon and Randall, 2019) and continue to be the focus of myr-

iad research programs, where studies are becoming even more essential as

anthropogenic activities negatively affect coral reef ecosystems worldwide.

Coral reef fish species numbers are estimated to be between 5000 and 8000,

making up anywhere from 16% to 25% of all named, extant fishes (Victor,

2015). Coral reef fishes exhibit an array of body morphologies, fin arrange-

ments, locomotory types, feeding strategies, physiological adaptations, and

reproductive modes. They range in size from less than 50mm (e.g., the crypto-

benthic species; Gobiidae and Blenniiformes; Brandl et al., 2018), up to 18m in

the largest fish in today’s oceans, the reef-associated whale shark (Rhincodon
typus). Moreover, coral reef fishes have long been investigated across a multi-

tude of—morphology, systematics, evolution, ecology, and conservation, to

name a few—that integrate naturally with physiological research. Such integra-

tive studies have been of particular, recent (i.e., 21st century) importance as

well and key to addressing the effects of multiple environmental and anthropo-

genic stressors, not only on individual coral reef fish species and within partic-

ular taxa, but also on whole ecosystems. Undeniably, given the current epoch,

the Anthropocene, where the dominant influences on the climate and environ-

ment come from human-based (i.e., anthropogenic) activities, there has never

been a more important time to be researching coral reef fishes and how they

respond to multiple, simultaneous, and often interacting stressors. We begin this

chapter with an overview of the state of knowledge, for which we use a system-

atic literature search and bibliometric analysis to illustrate. We then provide

case studies and discuss how the individual and combined stressors, ordered

by their frequency of occurrence in the meta-analysis, affect coral reef fish

physiology. We conclude with a horizon scan to discuss potential for acclima-

tion and adaptation, technological advances, knowledge gaps, and the future of

physiological research on coral reef fishes with implications toward conserva-

tion and protecting biodiversity and ecosystem health.

2 Current knowledge and trends over time

We conducted a systematic literature search to find studies investigating

effects of (multiple) environmental stressors on the physiology of (sub-) trop-

ical coral reef fishes. We collated studies examining physiological effects of

abiotic stressors, including (1) temperature, (2) pH/CO2, (3) hypoxia/deox-

ygenation, (4) salinity, (5) turbidity, (6) pollution, (7) noise, and (8) pressure

and biotic factors, such as (9) predator threats, (10) prey abundance, (11) para-

sites, and (12) disease on coral reef fishes.
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The optimal search strategy included separate search terms for each of the

12 factors and was librarian-verified at James Cook University (Townsville,

Australia) (see Appendix for more details and the search terms used

(Supporting Information in the online version at https://doi.org/10.1016/bs.

fp.2022.04.011)). Results of the different searches were pooled, duplicates

were removed, and then the remaining articles were manually checked for

their relevance, and subsequently retrieved for bibliometric analyses. We

included (i) original research (i.e., no reviews or meta-analyses) on subtropi-

cal or tropical coral reef fishes (i.e., based on Fishbase’s environment

classification), and (ii) studies that investigated a physiological metric.

Inter-disciplinary studies were included if they helped gain mechanistic

insight into physiological processes (e.g., molecular studies looking at gene

expression patterns of enzymes or stable isotope analyses). Studies investigat-

ing highly mobile pelagic species that can occur on (sub-) tropical coral reefs

(e.g., whale sharks, etc.) and studies examining the effects of fisheries and

angling related stressors were excluded. Purely ecological field and laboratory

studies (e.g., those reporting biting rates on benthos and plant material) were

excluded; however, studies that experimentally examined feeding rates were

included if the authors investigated the mechanistic relationship between a

stressor and feeding frequency. Studies examining swimming performance

and kinetics (e.g., acceleration, velocity) were included, but those examining

purely behavioral metrics (e.g., boldness, habitat preference, and risk assess-

ment trials) were excluded. In line with this, biotelemetry studies were only

included if they also examined physiological parameters (e.g., body tempera-

ture, acceleration, etc.). Methodological studies were largely excluded. Fur-

thermore, an overview of all existing multi-stressor studies was also created

by checking each of the studies resulting from the search for the number

and type of stressor investigated. The resulting articles were analyzed in R

(R Core Development Team, 2018) using the R package “bibliometrix”

(Aria and Cuccarullo, 2017).

In total, the search resulted in 875 scientific articles, of which 862 could

be retrieved for further bibliometric analysis. All articles were generated over

a 42-year period (i.e., 1979–2020, inclusive). Yet, only 67 of these studies

were published in the first 20 years of this analysis (i.e., 1979–1998), meaning

that approximately 92% of the studies have been published between 1999 and

2020. In fact, there were only four studies published before the 1990s after

which, until the year 2000, an average of eight articles were published annu-

ally. Research outputs for studies examining these 12 stressors on coral reef

fishes accelerated at the turn of the century (i.e., from 2000 onward), with

an average of 38 related studies being published annually through 2020. There

were a few global events related to coral reef health that occurred around this

time, which may have catalyzed some of these studies. For example, the Great

Barrier Reef (GBR, Australia) underwent mass coral bleaching (Fig. 1) due to

marine heatwaves (MHWs) associated with ocean warming in 1998, 2002,

2006, 2016, 2017, and 2020, which had never before been documented in
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human history (Hughes et al., 2021). It is noteworthy that 93% of the studies

assessing the effects of temperature stress (e.g., simulated ocean warming

conditions or heatwave events) on coral reef fishes, including studies investi-

gating more than one stressor, were published between 2001 and 2020.

However, only 29 studies investigated two of the aforementioned stressors

in combination and no studies examined three or more stressors together.

Therefore, multiple stressor studies represented only 3% of the literature

(Fig. 2). The most common combination for these dual-stressor studies

included temperature and CO2/pH, further highlighting the emphasis on cli-

mate change stressors (e.g., ocean warming and acidification) throughout

the analysis (see Section 4). Of all the studies assessed, 52% examined one

of the eight aforementioned abiotic stressors, and 45% examined one of the

four biotic stressors (Fig. 2). Studies examining the effects of pollutants on

coral reef fishes dominated the literature (i.e., 29% of all studies), which also

represented the most examined of the abiotic stressors, followed by tempera-

ture (i.e., 13% of all studies) (Fig. 2). Of the biotic stressors, prey abundance

was the most examined, representing 26% of all studies (Fig. 2) (see Appen-

dix for further details (Supporting Information in the online version at https://

doi.org/10.1016/bs.fp.2022.04.011)).

FIG. 1 Blue-green and black axil chromis (i.e., Chromis viridis and C. atripectoralis; Pomacen-

tridae) swimming among fully bleached coral (i.e., Acropora sp.) near Lizard Island, Australia, in

the northern part of the Great Barrier Reef 1 week into the marine heatwave,

February–March 2016. Photo credit: J.L. Rummer.
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Trends in research topics, assessed through the studies’ author keywords,

shifted over time (Fig. 3A). Several terms, such as stable isotopes, mercury,

bioaccumulation, and foodwebs, occurred more frequently from 2016 onward,

suggesting physiological metrics being used for examining feeding ecology

and dietary shifts (see Section 3.2.1) as well as bioaccumulation and bio-

magnification of pollutants (see Section 3.1.1). A network analysis generated

three main clusters of author keywords and visualized how the terms were

connected (Fig. 3B). The most dominant keywords in the first cluster were

fish, mercury, bioaccumulation, and biomagnification, with nine other minor

keywords in this cluster, again, suggesting considerable emphasis on abiotic

stressors associated with pollutants (see Section 3.1.1). The second cluster

was dominated by keywords including stable isotopes, coral reefs, food

web, and elasmobranchs, with seven other minor keywords, suggesting that

biotic stressors associated with predator-prey relationships and food availabil-

ity were heavily emphasized and perhaps most so on elasmobranch species, as

shark was also one of the minor keywords. The third cluster was dominated

only by two phrases: coral reef fish and climate change, with the other 18 key-

words weighted similarly and most associated to climate change stressors like

ocean warming and the various approaches that are used in physiological

temperature
pH/CO2

hypoxia/ deoxygenation
salinity

turbidity

pollution

noise
pressure

predator threatsprey abundance

parasites

disease

52%

45%

3%

BIOTIC

ABIOTIC

STRESSORS
COMBINED

STRESSORS

STRESSORS

FIG. 2 Visual representation of the proportion of studies investigating the physiological effects

of abiotic (i.e., temperature, pH/CO2, hypoxia/deoxygenation, salinity, turbidity, pollution, noise,

and pressure), biotic (i.e., predator threats, prey abundance, parasites, and disease) and combined

stressors on coral reef fishes from 1979 to 2020, inclusive. Data were derived from 875 studies

obtained from a systematic literature analysis (see Section 2).
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studies to assess the effects of those stressors (e.g., respirometry, critical ther-

mal maximum, etc.) on coral reef fishes. There was a fourth, minor cluster

containing only two keywords: predation and chemical defense. Of these, pre-

dation was most frequently utilized as a keyword in 2008; whereas, chemical

defense peaked as a keyword in 2000 (Fig. 3). The trends in keyword use have

also seemingly shifted over time, with those most commonly using terms

related to ocean warming, climate change, and elasmobranchs peaking in

the last decade, which also reflects the trends described above (Fig. 3).

3 Stress in coral reef fishes (primary, secondary, and tertiary
responses)

Classically defined, stress is “the nonspecific response of the body to any

demand made upon it” (Selye, 1973); yet, the word “stress” invokes an array

FIG. 3 The trend over time (A) and network analysis (B) of keywords (author generated) that were

most frequently used to describe studies examining the physiological effects of various abiotic and

biotic stressors on coral reef fishes. In panel A, the size of the circle represents the frequency

(i.e., 30, 60, 90 times, and corresponding spectrum from yellow, to gold, to rust colors) by which

the term was used as a keyword. While bibliometric results were derived from 875 studies spanning

1979 to 2020, due to the low number of studies prior to 2000, only keywords from 2000 to 2020

(x-axis) are represented here. In panel B, each circle represents a node, with the size of the node

emphasizing the frequency by which the term is used. The nodes are connected by lines that repre-

sent edges, with the weight of the lines emphasizing the strength of the connection. The color map

represents clusters or aggregations of nodes and edges. Together, the network of nodes and edges

and where they aggregate depicts the relationships between terms. See Section 2 for more details.
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of definitions depending on the context and discipline. Here, stress is defined

as the collective responses at primary, secondary, and tertiary levels under-

pinned by physiological mechanisms but often supported by behavioral

changes that are key to re-establishing and maintaining homeostasis and

ultimately surviving and thriving under an altered condition (Barton,

2002). A fish will respond to a threatening situation, the stressor, whether

the threat originates abiotically or biotically, and whether physical, chemical,

or perceived, via initiating a stress response. Therefore, it is the stressor that

evokes the stress response. Primary responses are largely neuro-endocrine in

nature via the hypothalamic–pituitary–adrenal (HPA) axis and involve a suite

of catecholamines and corticosteroids (glucocorticoids) that are released into

circulation (Wendelaar Bonga, 1997; see Chapter 3, Volume 39A: Castro-

Santos et al., 2022). Secondary responses involve the initiation of heat shock

proteins (HSPs) and changes in hematological parameters that instigate

changes at the metabolic, cardio-respiratory, immune, and ion-balance levels

(Mommsen et al., 1999). Primary responses can initiate secondary responses,

and therefore, the relationships can be difficult to separate. Whereas, tertiary

responses are often more behavioral and whole-organism level, resulting in

changes in growth, movement, and decreased disease resistance, to name a

few, and often stem from primary and secondary responses (Wedemeyer

et al., 1990). The stress response can be immediately beneficial (e.g., fight

or flight) or adaptive over the longer term, which is important to note given

the classic definitions and misconceptions that stress is always negative

(Chrousos, 1998). However, some stress responses may also be maladaptive,

for example, considering responses that alter growth, feeding, digestion,

immune function, and/or reproduction (Barton and Iwama, 1991). Despite

the considerable variation across taxa and life history stages, the hormonal

underpinnings of the stress response and resulting mechanistic responses are

relatively well-understood and have been examined extensively across the tel-

eost fishes, albeit less so in the elasmobranchs. The effects of multiple stres-

sors, however, are not well-understood but are more relevant to the

fishes—coral reef fishes or otherwise—today, living in the multi-stressor

world of the Anthropocene.

3.1 Abiotic stressors (natural and anthropogenic)

Abiotic stressors arise from non-living influences on living organisms and can

originate from chemical or physical sources and can be both natural and

anthropogenic in origin, as well as originate both locally and globally. The

order of the following sections is based on the frequency of studies investigat-

ing the respective stressors in the bibliometric analysis. The most pervasive,

individual abiotic stressors include pollutants (i.e., including heavy metals

and other toxicants), temperature, low oxygen (i.e., hypoxia, deoxygenation),

changes in pH or CO2 (often communicated together), noise, salinity, pressure

or depth, and turbidity.

Coral reef fishes in a multi-stressor world 7
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3.1.1 Pollutants

Toxicology studies on coral reef fishes have a long and extensive history, with

some of the first physiological studies commencing at least by the 1970s

(reviewed in Wood, 2012; also see Chapter 3, Volume 39B: De Boeck et al.,

2022). While much is known regarding the effects of various metals and their

bioaccumulation capacities, emerging pollutants (e.g., poly-aromatic hydro-

carbons (PAHs), polychlorinated biphenyls (PCBs), flame retardants (e.g.,

polybrominated diphenyl ethers, PBDEs, and polybrominated biphenyls, PBBs),

surfactants, and pesticides and interacting stressors are a product of the Anthro-

pocene. The foundational work in these early toxicology studies, however, has

been key in integrating and assessing the effects of emerging pollutants such

as micro- and nano-plastics (reviewed in John et al., 2021), antibiotics and other

pharmaceuticals, and although not unique to the Anthropocene, the increased

prevalence of ciguatoxins (CTXs). Yet, it is important to note that, even though

the physiological effects of heavy metal exposure have been thoroughly inves-

tigated over the years, with technological advancements (e.g., computers,

smartphones, smartwatches) and their rapid turnover rates and associated waste

issues, metal pollution has remained a pervasive issue.

Heavy metals largely come from agricultural, technological, medical, and

industrial sectors are categorized by whether they are biologically essential or

nonessential to the organism. Biologically essential metals include copper

(Cu), zinc (Zn), chromium (Cr), nickel (Ni), cobalt (Co), molybdenum

(Mo), and iron (Fe), and while these metals have known biological roles, tox-

icity can occur if concentrations are too low or too high. In contrast, nones-

sential metals, such as aluminum (Al), cadmium (Cd), mercury (Hg), tin

(Sn), and lead (Pb) have no demonstrated biological function in fish, and so

toxicity tends to commensurate with concentration. Due to increased heavy

metal demand in the Anthropocene and issues associated with runoff, effluent

discharge, and atmospheric fallout, heavy metal distribution in coastal waters

has become widespread. Sea ports, having concentrated economic and recrea-

tional activities, have long been recognized as environments that are suscepti-

ble to heavy metal pollution. In Queensland, Australia, for example, there are

21 ports ranging from small community, multi-cargo, and multi-national coal

export terminals, all of which are in close proximity to the Great Barrier Reef,

meaning that coral reef fishes are highly susceptible to heavy metal exposure,

and as such have been heavily investigated.

Heavy metals tend to accumulate in fish as they feed and respire, with con-

sequences throughout other physiological systems, such as the liver, due to its

metabolizing and detoxifying properties. Metals are also well-known inducers

of oxidative stress as well, and so many studies have examined oxidative

damage (reactive oxygen species, ROS, production) and antioxidant defenses

(e.g., superoxide dismutase; SOD, catalase; CAT, glutathione peroxidase;

GPx, and glutathione-s-transferase; GST) in fish species exposed to metals
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(reviewed in Sevcikova et al., 2011). Yet, the earliest studies were likely exe-

cuted because vertebral deformities were observed in fish exposed to cad-

mium. The different pathways of accumulation lead to differential

distribution of heavy metals across the various tissues of the fish but can also

be influenced by the presence of metallothioneins (i.e., primary metal-binding

proteins), the metabolic activity of the particular organ or tissue, the rate of

blood flow, and metal-specific binding properties. While many studies on

heavy metal exposure/accumulation in coral reef fishes have taken a mecha-

nistic perspective and spanning developmental stages, much focus has been

for applied outcomes. This is likely given the proximity of heavy metal

sources and recreational and commercial fishing sectors and the potential

for bioaccumulation in economically prized species (e.g., coral trout, Plectro-
pomus spp.). As such, many coral reef fish species—and specific tissues,

such as the liver—have become bioindicator species for harmful levels of

heavy metals (e.g., Great Barrier Reef, Rayment and Barry, 2000), and this

area of research will be important in addressing the effects of interacting

stressors.

The demand for petroleum products has increased dramatically since the

mid-20th century, with oil extraction and transport activities growing. More

than 6 million metric tons of petroleum products have entered the oceans,

largely due to industrial discharge, urban run-off, and shipping operations,

and more than 300 major marine oil spills since the 1970s (summarized

in Johansen et al., 2017). The heavy crude oils that are a key component of

these processes include PAHs that are toxic, carcinogenic, mutagenic, and

teratogenic to marine life (Negri et al., 2016). Because PAHs come from

many sources—pyrogenic (combustion-derived) and petrogenic (petroleum-

derived)—are often lipophilic, and break down slowly, they are pervasive in

the marine environments, especially near urban areas, industrial or shipping

operations and oil drilling/extraction sites. Yet their effects on coral reef fish

species, trophic transfer, and potential for bioaccumulation (over ontogeny)

and biomagnification (across trophic levels) are still not well understood.

While many studies on PAH exposure in coral reef fishes come from an

applied, human health angle (i.e., consumer driven), further researchers have

started investigating potential adverse health effects for the fish as well. Liver

and bile metabolites, enzymes, and muscle tissue are typically analyzed across

species, ontogeny, trophic levels, and source proximity to determine bioaccu-

mulation, biomagnification, and if/when species would be good bioindicators

( Juma et al., 2017; De Albergaria-Barbosa et al., 2017). Indeed, such analyti-

cal approaches determined that PAH contamination in coral reef fishes from

the South China Sea originated from biomass combustion, petroleum sources,

and vehicular emissions (Li et al., 2019). Similar to those associated with

antioxidant roles with metal exposure, enzymes that have been specifically

identified for tracking PAH exposure because of their elimination pathways

Coral reef fishes in a multi-stressor world 9
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include ethoxyresorufin-O-deethylase (EROD) and GST (Cullen et al., 2019;

King et al., 2005). It has also been determined that liver burdens are indicative

of acute exposure to PAHs because the tissue is highly dynamic when com-

pared to muscle. However, muscle burdens are useful to assess chronic expo-

sure because of the slower turnover rate and lower likelihood of concentrating

such contaminants due to lipid mobilization. Invasive species (e.g., lionfish,

Pterois volitans) have been used as biomonitoring species with PAH accumu-

lation via biomarkers including bile fluorescence and liver enzyme activities

(Van Den Hurk et al., 2020). Two economically valued Australian

reef-associated species, the gold-spotted trevally (Carangoides fulvoguttatus)
and bar-cheeked coral trout (Plectropomus maculatus), have also been used

as bioindicators (King et al., 2005). Yet, such studies continue to highlight

that, factors such as the fish’s lipid content, length, and weight can affect

PAH accumulation ( Jafarabadi et al., 2019, 2020; Sun et al., 2019). Trophic

ecology is key as well, with sharks prone to bioaccumulation and biomagnifi-

cation since they occupy high trophic levels in their ecosystems. Although

Cullen et al. (2019) measured higher than expected PAH accumulation in

the liver and muscle samples from several shark species, they also noted that

diet, niche partitioning, and life history characteristics, including those span-

ning ontogeny, affect PAH accumulation.

It is known from studies on PCBs that PAH accumulation results in similar

adverse health effects in fishes, such as, but not limited to decreased vitamin A

concentrations, thyroid hormone deficiency, and immunosuppression. PAH

exposure also alters growth and has a suite of other physiological effects as

demonstrated in salmonids (e.g., Meador et al., 2006), cod (Sørensen et al.,

2019), haddock (Meier et al., 2010; Sørhus et al., 2016), herring (Incardona

et al., 2012) and mahi mahi (Mager et al., 2017). Other studies have indicated

that PAH exposure and accumulation in fishes can cause genotoxicity (and

associated carcinogenesis), as well as endocrine and metabolic disruption

(reviewed in Cullen et al., 2019) and enhanced photo-toxicity upon exposure

to ultra-violet (UV) radiation (Aranguren-Abadı́a et al., 2022). While the inter-

action with PAH and UV exposure has been thoroughly demonstrated in cod

(Aranguren-Abadı́a et al., 2022) and mahi mahi (Alloy et al., 2016), given the

proximity of coral reefs to UV radiation and the surge of studies documenting

adverse effects of PAH and UV exposure on corals (Overmans et al., 2018), it

follows that this combination of stressors will continue to increase in relevance

in the Anthropocene. Early life history stages of coral reef fishes may be most

vulnerable as well, as determined by Johansen et al. (2017) in six pre-settlement

stages of coral reef fishes, where PAH exposure resulted in greater mortality,

stunted growth rates, altered habitat settlement, and changes in anti-predator

behaviors (reduced sheltering and shoaling and increased risk-taking). Such

results suggest a novel path of PAH injury whereby higher-order cognitive pro-

cessing and behaviors necessary for successful settlement and recruitment of

larval coral reef fishes are impaired ( Johansen et al., 2017). More work is
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needed, and this will be an area of research on coral reef fishes that will con-

tinue to increase in importance and necessity.

Environmental levels of PCBs and various organochlorin-based pesticides

(e.g., dichlorodiphenyl trichloroethane; DDT) have been on the decline (e.g.,

Rachel Carson’s Silent Spring was published in 1962, and both were banned

in the United States in the 1970s and other countries soon after), but many fish

species still exhibit significant levels. This is likely because their overall tox-

icity, capacity for bioaccumulation and biomagnification (Kobayashi et al.,

2019), low elimination (Wang and Wang, 2005) in fishes, long half-lives,

continued use in some areas (e.g., DDT for malaria control in Kenya), and

prevalence in landfills, sediments, and rivers mean that they remain in marine

ecosystems. Studies like those examining the effects of PAH exposure on

fishes have been executed to determine the effects of PCB and DDT exposure,

but perhaps for longer, since the advent of modern agriculture and industrial

pesticides. Moreover, because there is a relationship between, for example,

PCB exposure time and age, some coral reef fish species (e.g., Abudefduf
sordidus, blackspot sergeant; Kerr et al., 1997) have been used as bioindica-

tors. Much work has incorporated trophic positions using various organisms

(e.g., phytoplankton, copepods, and fish; Wang and Wang, 2005) to determine

trophic magnification factors of such environmental pollutants (e.g., benthic

food webs compared to pelagic food webs; Kobayashi et al., 2019). While

much of this research is executed because of the implications these pollutants

have on human health when persisting in marine ecosystems, these compounds

also directly affect the physiological health of coral reef fishes (e.g., including

sharks and rays, Storelli et al., 2011; Cullen et al., 2019). Most effects are at the

level of endocrine pathways (e.g., steroid biosynthesis, oogenesis, spermatogen-

esis, etc.), and liver is the tissue most often analyzed (reviewed in Reijnders and

Brasseur, 1997; Storelli et al., 2011). Climatic and ecological factors, tempera-

tures, rainy versus dry seasons, etc. can affect how such compounds degrade or

persist in marine environments (Wandiga et al., 2002), and given that they per-

sist despite bans, this area of research will likely continue to be important.

Emerging pollutants such as, for example, micro- and nano-plastics will

continue to pose health concerns for coral reef fishes and their ecosystems,

given their global abundance and persistent use, even as single-use, by humans.

The sources of these plastics and why they end up in the oceans (i.e., and more

specifically why there are more micro- and nano-plastics in shallow, productive

areas, such as coral reefs) are clear ( Jambeck et al., 2015). Yet, exposure is

seemingly unavoidable, especially under the current global waste management

and production trends. Models predict that, by 2050, 12,000 million tonnes

(MT) of plastic waste will be incinerated, 9000 MT will be recycled, and

12,000 MT of waste will be disposed of in landfills or in the natural environ-

ment (reviewed in John et al., 2021). Moreover, it is not just the chemical com-

position (e.g., polypropylene, polyethylene, polypropylene ether, polyethylene

terephthalate, polyester, etc., all of which have been well-studied in terms of
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their toxicity), but also the chemical additives, which are often used to improve

the structural properties of the plastic, that also contribute toxic effects

(Galloway et al., 2017). While the size of micro- and nano-plastics is key, as

it is within optimal prey ranges for many organisms in the marine environment,

the shape and color also influence ingestion rates and toxicity (Galloway et al.,

2017). Like with other pollutants, bioaccumulation via ingestion and transfer

across trophic levels is the starting point, and studies commencing in the early

2000s through to the present emphasize that microplastics can now be found at

every trophic level (Kroon et al., 2018). However, the mechanisms that under-

pin transfer from digestive tissues across to other organ systems are not yet

clear. From freshwater fish models, studies have determined that nano-plastic

particles can cross the blood-brain-barrier, which may underpin behavioral

issues observed upon exposure (Mattsson et al., 2017). And, when coupled

with the stress of degraded habitat, coral reef fishes (e.g., Ambon damselfish,

P. amboinensis) that ingest micro-plastics, exhibit bold, risk-taking behaviors

that decrease survival, which may relate to their nutritional status

(McCormick et al., 2020). Given that another study found no effect of micro-

plastic ingestion on settlement stage surgeonfish (Acanthurus triostegus) when
faced with the threat of predatory lionfish (Pterois radiata) ( Jacob et al.,

2019), it is clear that more work is needed in this area, especially when consid-

ering that coral reef fishes exposed to increasing concentrations of micro- and

nano-plastics will also be facing other stressors in concert. Although plastic

toxicity has been studied for decades, this is an emerging stressor coral reef

fishes are experiencing and one they will continue to face if waste management

protocols remain unabated.

3.1.2 Temperature

Temperature is one of the most well-studied abiotic stressors in coral reef

fishes, second only to pollutants. Whether warm or cold temperatures, over

acute or chronic timescales, the physiological effects of thermal stress on most

ectotherms, including the coral reef fishes, are generally understood. More-

over, with increasingly pervasive MHWs and widespread warming due to

climate change, contemporary studies focus heavily on temperature. However,

the temporal scale and the magnitude over which temperature changes

occur, the order in which certain physiological systems respond to thermal stres-

sors, and how those physiological responses affect behavior, movement, distri-

bution, and other fitness-relevant traits will depend on species, life history

stage, prior thermal history, and the presence of other stressors.

Physiological sensitivity to changing temperatures can commence at the

most basic level but the mechanistic underpinnings are not always easy to

interpret. Ectotherms in general, coral reef fishes included, typically exhibit

an increase in biochemical rate functions with an increase in temperature.

This temperature quotient or Q10 relationship, on average, suggests that for
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every 10 °C increase in temperature, rates double or triple (i.e., Q10¼2–3;
Clarke and Johnston, 1999; Schmidt-Nielsen, 1997). Classic examples of

these relationships come from studies on enzyme activities and organ

tissue preparations (e.g., muscle contractions) under controlled laboratory

conditions (Fields and Somero, 1997; Gelman et al., 1992; Johns and

Somero, 2004; Johnson and Johnston, 1991; Lin and Somero, 1995). In con-

temporary studies, this relationship is also often reflected in estimates of met-

abolic rates (e.g., standard, resting, active, and maximum), where species

compensating for a temperature increase can maintain Q10 at or around

2 (Eme and Bennett, 2009a), while those unable to compensate exhibit Q10

relationships well exceeding 2 (Rummer et al., 2014). Trade-offs may occur

as well, where compensation occurs for functions at rest but not under maxi-

mal performance, or energy is saved in one trait at the cost of another, which

may depend on the behavior and functional role of the species ( Johansen and

Jones, 2011; Rummer et al., 2014).

Several theories have been proposed to predict the causes of the various

physiological responses to compensate (or not) for temperature increases.

The Gill-Oxygen Limitation Theory (GOLT) proposes that body size and

function in fish is limited by the gills’ inability to adjust and supply sufficient

oxygen to satisfy increasing metabolic costs under elevated temperatures

(Pauly, 2019). The Oxygen and Capacity Limited Thermal Tolerance

(OCLTT) hypothesis proposes cardio-respiratory transport and tissue demand

as the main determinants of an organism’s performance under ocean warming

(P€ortner, 2014; P€ortner et al., 2017). However, mixed empirical evidence has

led to a controversy about the exact mechanisms affecting species’ performance

under elevated temperatures, as none of the current theories can explain all

observed responses (reviewed in Audzijonyte et al., 2019; Ern et al., 2017;

Jutfelt et al., 2018). More broadly unifying principles are currently lacking

(but see Audzijonyte et al., 2019; Clark et al., 2013; Ern, 2019). Reviews on

this topic have, therefore, emphasized the urgent need for cross-disciplinary,

mechanistic studies that explore the timescales over which thermal responses

occur to assess the molecular and physiological mechanisms underpinning tem-

perature compensation, especially in thermally sensitive species (Audzijonyte

et al., 2019; Jutfelt et al., 2018).

Coral reef fishes, given their latitudinal distribution, especially populations

living in particularly low latitudes (i.e., closer to the equator), are likely

adapted to narrow temperature ranges (i.e., stenothermal, as opposed to eury-

thermal). This suggests that, despite living in warmer climes than their temper-

ate latitude counterparts, coral reef fishes will exhibit greater sensitivity to

temperature increases associated with ocean warming as they are already

living close to their upper thermal limits (Eme and Bennett, 2009b; Rummer

et al., 2014; Tewksbury et al., 2008). For example, five species of coral reef

fishes from three latitudinally distinct populations spanning more than

2300km from the southern Great Barrier Reef to near-equatorial locations
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of Papua New Guinea exhibited no differences in optimal temperatures for

aerobic performance (Rummer et al., 2014). This was despite the equatorial

populations residing in a very narrow range (e.g., approximately 2 °C) and

the southern Great Barrier Reef populations residing in a much wider range

(e.g., approximately 10°C) of annual, seasonal temperatures (Rummer et al.,

2014), suggesting a wide thermal buffer zone for high latitude populations

and high temperature sensitivity in the near-equatorial populations. This is

not unprecedented either with loss of hypoxia tolerance (Nilsson et al.,

2010), increased metabolic costs (Gardiner et al., 2010; Rodgers et al., 2018,

2019), reductions in swimming performance ( Johansen and Jones, 2011),

and worsened predator escape responses (i.e., slower reaction times, slower

escape speeds, and shorter escape distances; Allan et al., 2015; Motson and

Donelson, 2017; Warren et al., 2017) when compared to their control temper-

ature counterparts. Although these trends in coral reef fishes have only been

revealed since the early 21st century, this topic has been historically well-

researched in terrestrial species (Deutsch et al., 2008; Tewksbury et al., 2008).

Many examples of temperature sensitivity in coral reef fishes exist, and

factors such as latitude/biogeography, activity level, and size (Di Santo and

Lobel, 2016, 2017; Messmer et al., 2017; Ospina and Mora, 2004), help deter-

mine temperature sensitivity. Interestingly, in equatorial populations of two

damselfish species, calculated Q10 values for resting metabolic rate estimates

at 29 and 34 °C well exceeded Q10¼2 (i.e., 4.8 and 7.2), suggesting that, at

34 °C, over twice as much energy is required for these species to maintain

routine metabolic processes than at their summer average temperatures of

29 °C (Rummer et al., 2014). It could be that the high Q10 values are a product

of the stable, narrow thermal range experienced by these small, tropical,

coral reef fishes residing near the equator. Likewise, two closely related

coral reef fish species (Abudefduf vaigiensis and A. whitleyi) exhibited

different energetic costs upon exposure to cooler temperatures, which

resulted in reduced growth rates, feeding rates, burst escape speed and meta-

bolic rates that were more pronounced in the species with the narrower latitu-

dinal range (Djurichkovic et al., 2019). Species with wide thermal ranges

(e.g., A. vaigiensis in the former example), however, have the potential to

expatriate into new habitats, suggesting that climate-driven range shifts could

result in species introductions and alter trophic interactions and predator-prey

dynamics (Barker et al., 2018; Figueira et al., 2019; Rowe et al., 2018). Life

stage may play a role as well. Given that the majority of coral reef fishes have

a bipartite life cycle, consisting of a pelagic larval stage, many species could

be venturing several hundred kilometers from their natal reefs and for weeks

to months at a time in vastly different thermal regimes, thereby necessitating

thermal compensation. However, if coral reef fishes are locally adapted to

their thermal environment, do not regularly experience seasonal temperature

fluctuations, and do not move far from these microhabitats, there would be

no drive to possess such metabolic compensation for changes in temperature
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(e.g., acclimation or acclimatization, also see Section 5), further underpinning

their temperature sensitivity as warming continues.

Indeed, understanding such temperature compensation strategies is also

important when disentangling the responses of an organism upon acute

changes (e.g., MHWs, Fig. 1; Allan et al., 2015; Bernal et al., 2020;

Johansen et al., 2021) from how an organism responds to slowly increasing

but chronically elevated temperatures (e.g., as with ocean warming). By defi-

nition, MHWs, which are when temperatures are warmer than the 90th per-

centile based on a 30-year historical baseline period and last for five or

more days (Hobday et al., 2016), have been of particular concern on coral

reefs, as heatwaves have been increasing in severity and frequency since the

beginning of the 21st century. The rate of temperature increase may be impor-

tant as well, as found in laboratory studies on coral reef fishes (Illing et al.,

2020), but aside from a few studies (e.g., Allan et al., 2015), MHW scenarios

have only been applied to coral reef fishes since coral reefs started bleaching

(Fig. 1), globally, due to climate change mediated ocean warming (Hughes

et al., 2021). Upon simulation of MHW conditions (e.g., 3 °C above ambient),

two coral reef fish species (e.g., Caesio cuning and Cheilodipterus quinqueli-
neatus) elicited coordinated responses in 13 tissue and organ systems over

5 weeks ( Johansen et al., 2021). The onset and duration of biomarker

responses (e.g., red muscle citrate synthase and lactate dehydrogenase activ-

ities, blood glucose and hemoglobin concentrations, spleen somatic index,

and gill lamellar perimeter and width; Johansen et al., 2021), differed between

species as well. The more active, mobile species (C. cuning) initiated

responses to the simulated heatwave within the first week of exposure

( Johansen et al., 2021). However, the more sessile, territorial cardinalfish spe-

cies (C. quinquelineatus) exhibited a comparatively reduced response that was

delayed over time. Perhaps the more mobile species, that would normally

move to more favorable thermal microhabitats in the face of a MHW, once

unable to do so instigated responses right away. In contrast, the more sessile

species may be more prone to “wait it out” before initiating physiological

responses. The study identified seven biomarkers, including red muscle citrate

synthase and lactate dehydrogenase activities, blood glucose and hemoglobin

concentrations, spleen somatic index, and gill lamellar perimeter and width,

that proved critical in evaluating the progression as to how fish responded

over the course of the simulated heatwave ( Johansen et al., 2021). Some work

has emphasized the role of gill biomarkers (Madeira et al., 2017a; Rodgers

et al., 2019) or antioxidant chaperones (e.g., catalase, ubiquitin, lipid peroxi-

dase; Madeira et al., 2017a), but ultimately, the degree of thermal sensitivity

depends on the trait examined.

At the molecular level, gene expression patterns can help to rapidly and

thoroughly survey the physiological processes that are key to maintaining

homeostasis during a thermal event, with a plastic transcriptional response

indicating varying degrees of thermal tolerance (Bernal et al., 2020).
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Such changes in gene expression patterns have been found to be species and

population specific (Veilleux et al., 2018a), which may factor into activity,

behavior, and home range (e.g., cardinalfishes). Populations from higher

latitudes with wider thermal ranges have exhibited greater plasticity in gene

expression patterns in response to simulated heatwave events when compared

to their lower latitude counterparts (Veilleux et al., 2018a), which supports

findings for whole organism physiological traits as well. Gene expression pat-

terns may also depend on the duration of exposure, as was found in wild coral

reef fishes collected before, during, and after the MHW (Fig. 1) that was per-

vasive throughout the northern Great Barrier Reef in the austral summer of

2015–2016 (Bernal et al., 2020). Although it was the first time that gene

expression patterns had been directly evaluated in wild fish populations dur-

ing a MHW, it was perhaps not surprising that differentially expressed genes

associated with immune function and cellular stress responses, including

HSPs, mitochondrial activity, and toxin metabolism in the liver in response

to the changing temperatures were uncovered (Bernal et al., 2020), given

the physiological traits that have been assessed in previous studies. Other

changes that were species-specific and temporally evident were related to

fatty acid and cholesterol metabolism and glucose levels that may also be

associated with secondary stressors these coral reef fish populations experi-

enced during the MHW (e.g., changes in food availability and trophic interac-

tions, increased algal cover) (Bernal et al., 2020). This is not unprecedented,

however, as Norin et al. (2018) determined that, for orange-fin anemonefish

(Amphiprion chrysopterus), the combination of warming conditions and result-

ing habitat damage (i.e., bleaching of their symbiont sea anemones; Heteractis
magnifica) resulted in a significant increase in metabolic costs, which, over the

longer term can lead to stress-induced changes to reproductive hormones and

decreased fecundity (Beldade et al., 2017). Indeed, findings so far have empha-

sized the complex role of multiple stressors and cascading effects they will have

on coral reef fishes as we move through the Anthropocene.

Certainly, many studies examining temperature stressors in coral reef

fishes have done so within a life stage and population. Species or populations

with narrow thermal ranges and those that do not experience dramatic changes

in seasonal temperatures may not possess considerable capacity for thermal

acclimation. In contrast, species or populations residing in more subtropical

or temperate latitudes with greater seasonal variation in temperatures may

acquire more tolerance for warm temperatures during the summer months

and more cold tolerance (i.e., while losing high temperature tolerance) during

the winter months (Fangue and Bennett, 2003). For example, low latitude

populations of Acanthochromis polyacanthus exhibit increases in gill pathol-

ogies not found in mid or high latitude populations of the same species

upon acclimation to elevated temperatures emphasizing thermal specialization

in low latitude populations (Rodgers et al., 2019). Yet, in the pan-tropical

clownfish species (Amphiprion ocellaris), thermal preference, tolerance,

16 Fish Physiology Volume 39B

ARTICLE IN PRESS



and aerobic metabolic scope were all found to depend heavily on acclimation

(Velasco-Blanco et al., 2019), and similar findings were reported for subtrop-

ical Hippocampus erectus (Mascaro et al., 2019)—noting that both are impor-

tant species in the aquarium trade. Acclimation or acclimatization may play a

substantial role in how species respond to changing temperatures, which var-

ies by species, population, and/or may depend on demography (Eme and

Bennett, 2009b).

While acclimation can confer plasticity in some performance traits, it may

not be the most reliable indicator of the ultimate survival and distribution of

stenothermal coral reef fishes, especially the more mobile species, under

ocean warming scenarios. Thermal preference and behavioral (e.g., move-

ment) thermoregulation (Barker et al., 2018; Gervais et al., 2018; Habary

et al., 2017; Hight and Lowe, 2007; Reyes et al., 2011; Speed et al., 2012b)

can often supersede acclimation in some instances. Indeed, physiological ther-

mal sensitivity and thermoregulatory behavior are likely coadapted (Angilletta

et al., 2002, 2006; Huey and Bennett, 1987) as the thermal history that defines

a species’ optimal temperatures for performance (e.g., metabolic traits, swim-

ming, etc., as discussed above) often determines its preferred temperature

range as well (Bryan et al., 1990; Johnson and Kelsch, 1998). Therefore, in

the wild, most species will likely pursue temperatures that coincide with their

optimal performance temperatures during a given life stage (Beitinger and

Fitzpatrick, 1979; Brett, 1971; Payne et al., 2016; P€ortner and Farrell, 2008;

P€ortner and Knust, 2007). Critically, for behavioral thermoregulation to help

mitigate the effects of rapid climate change, evolutionary changes in optimal

temperatures for certain traits should also provide a strong selective pressure

for changes in preferred temperatures (Angilletta et al., 2002; Bryan et al.,

1990). This inherent relationship has been examined more frequently through-

out contemporary studies in coral reef fish species with the aim of predicting

phenotypic shifts in temperature sensitivity of various physiological perfor-

mance traits (e.g., see Donelson et al., 2011, 2012) that may also lead to

changes in preferred temperatures—such relationships may be the primary

driver escalating the poleward migration of species. Indeed, current evidence

suggests that 365 different species across 55 families of tropical fishes are

either on the move or have already undergone bio-geographical redistributions

or range shifts as a result of climate change and more specifically ocean

warming (Feary et al., 2014; Figueira and Booth, 2010; Gervais et al., 2021).

3.1.3 Hypoxia and ocean deoxygenation

Oxygen is the greatest factor limiting physiological performance and survival

of marine life, including the coral reef fishes (Sampaio et al., 2021). Nearly all

vertebrate life requires oxygen (O2) to support and sustain aerobic activities,

and while anerobic (i.e., without O2) metabolism is possible, it is time-limited

and species- and context-dependent. Because O2 is the final electron acceptor
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in the electron transport chain, O2 partial pressures (pO2) set the rates of aer-

obic metabolism. Aerobic metabolic rates are both dependent and independent

of environmental pO2 along a continuum; species that regulate metabolic rate

independent of environmental pO2 are referred to as “oxyregulators,” and

species whose metabolic rates conform to environmental pO2 are referred to

as “oxyconformers” (Mueller and Seymour, 2011). While most species are

thought to be oxyregulators (Svendsen et al., 2019), and maximum metabolic

rates in fishes (and ectotherms in general) are reduced with decreasing envi-

ronmental pO2, such rates do not increase when environmental pO2 exceeds

saturation (Seibel and Deutsch, 2020). Instead, standard metabolic rate (i.e.,

the energetic costs required to sustain basic metabolic functions) is regulated

until pO2 is too low, and fishes transition from oxyregulating to oxyconform-

ing (see Fig. 1 in Heinrich et al., 2014).

Hypoxia is usually defined when dissolved O2 concentrations fall below

2.8mg O2 L�1 (Breitburg et al., 2018), but this is an arbitrary threshold,

because hypoxia tolerance is species- and context-specific, at the very least.

It is also important to note that oxygen uptake is driven by the partial pressure

gradient of the gas between the water and the blood, and therefore the asso-

ciated parameters that determine oxygen solubility (e.g., temperature, salinity,

pressure, etc.) are key. Species may also respond differently depending on life

stage, energetic demands, and habitat conditions.

Most coral reef fishes, due to a bipartite life cycle, transition from a

pelagic larval stage where they may spend weeks to months in the pelagic

environment to settling onto the reef. In the pelagic, they exhibit record aero-

bic swimming and O2 uptake capacities (Downie et al., 2021). Upon settling

onto the reef and on into adulthood, however, reef fishes acquire notable

hypoxia tolerance (Nilsson et al., 2007). Other species that mouth brood also

exhibit unparalleled levels of hypoxia tolerance (Ostlund-Nilsson and Nilsson,

2004; Takegaki and Nakazono, 1999). Indeed, hypoxia tolerance may be a

necessity for coral reef fishes to benefit from sheltering within the reef matrix

at night because nighttime O2 levels decrease dramatically (i.e., below 20%

air saturation) when coral and other benthic organisms transition from photo-

synthesis to respiration (Nilsson et al., 2007; Nilsson and Ostlund-Nilsson,

2004). Moreover, small reef flats and tidepools that become isolated during

low tide will also become hypoxic at night, necessitating hypoxia tolerance

(Rummer et al., 2009). Several studies have assessed the capacity for coral

reef fishes, from settlement to adulthood, to tolerate varying levels of hypoxia

and the potential underlying physiological mechanisms (Nilsson et al., 2007;

Nilsson and Ostlund-Nilsson, 2004). This is particularly interesting from a

purely physiological perspective, such as hemoglobin (Hb) O2 binding affin-

ity. Usually, if an organism has a high capacity for O2 delivery (low

Hb-O2 affinity) that would come with elite aerobic performance, they will

not also have a high capacity for enhanced O2 uptake (high Hb-O2 affinity),
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which is usually observed in hypoxia tolerant species. This could change with

life history stage, however, as was demonstrated with the salmonids in the late

1970s (Giles and Vanstone, 1978), or with hypoxia exposure (Bianchini and

Wright, 2013). Indeed, several larval coral reef fishes have the highest

mass-specific maximum O2 uptake rates of any larval teleost (i.e., also any

other ectothermic vertebrate measured) as well as the fastest swimming

speeds for their body sizes (reviewed in Downie et al., 2021), suggesting high

aerobic capacity during their larval life history stage. However, when coral

reef fishes transition to the reef, they exhibit a dramatic decrease in critical

oxygen tensions, suggesting they shift to being hypoxia tolerant (Nilsson

et al., 2007). The reductions in aerobic metabolism and swimming perfor-

mance that occur in coordination with settlement and hypoxia tolerance are

seemingly unequivocal, but the exact timeline and underlying mechanisms

are likely species-specific and not yet well-understood, but an area certainly

warranting further investigation.

Beyond the teleost fishes, several elasmobranch species have been investi-

gated for their typically uncharacteristic capacity to tolerate hypoxia and even

anoxia (zero oxygen), which may also be related to the shallow, benthic, reef

flat microhabitats that some shark species inhabit. In sharks, hypoxia initiates

a suite of physiological responses, including ventilatory depression (Chapman

et al., 2010) and expression of hypoxia inducible factor and heat-shock pro-

teins (Renshaw et al., 2012). While several studies have investigated hypoxia

and even anoxia tolerance in sharks and their relatives (reviewed in Pereira

Santos et al., 2021; Rummer et al., 2022), only a few coral reef or

reef-associated species have been investigated (e.g., Bouyoucos et al., 2020;

Carlson and Parsons, 2001, 2003; Crear et al., 2019; Dabruzzi and Bennett,

2013; Hickey et al., 2012; Musa et al., 2020; Routley et al., 2002;

Speers-Roesch et al., 2012; Wise et al., 1998). One such species is the epaulet

shark (Hemiscyllium ocellatum), which has been the focus of the majority

(i.e., at least 13 since the 1990s) of the studies on hypoxia and anoxia toler-

ance (in addition to studies on other environmental stressors) on sharks and

their relatives. Unlike in other hypoxia- and anoxia-tolerant species, the epau-

let shark exhibits no adenosine-mediated increase in cerebral blood flow and

likely activates adenosine receptors that initiate metabolic depression and aid

in maintaining brain adenosine triphosphate (ATP) levels—which would nor-

mally deplete—during an unprecedented 4h of anoxia (Renshaw et al., 2002;

S€oderstrom et al., 1999). Moreover, unlike other vertebrates, the epaulet shark

preserves mitochondrial function—which would otherwise lead to cell dam-

age and cell death—upon re-oxygenation post-anoxia exposure (Devaux

et al., 2019). Given the small size of the epaulet shark and vulnerability to

predation, it may make sense that this species exploits shallow, tidally influ-

enced reef flats for shelter, even if such habitats exhibit dramatic declines in

O2. Therefore, this species must possess the physiological mechanisms that
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allow them to do so. Yet, it is interesting that these mechanisms used by the

epaulet shark are different than what is understood for hypoxia tolerant

teleosts and unprecedented in other elasmobranchs.

Despite the array of studies that have investigated low oxygen stress on

teleost and elasmobranch fishes, no study published before mid-2021 has done

so within a climate change context (i.e., ocean deoxygenation). It is important

to clarify that the term hypoxia is not interchangeable with ocean deoxygen-

ation (Klein et al., 2020), but quantifying hypoxia tolerance strategies and

determining species’ thresholds is important in defining the effects of ocean

deoxygenation. This is especially important, given that hypoxia events elicit

a stronger effect than ocean warming, ocean acidification, or the combination,

and across biological traits (e.g., survival, abundance, development, metabo-

lism, growth, and reproduction), taxonomic groups, ontogenetic stages, and

climatic regions (Sampaio et al., 2021). Still, within the context of anthropo-

genic stressors, issues related to the effects of low oxygen on coral reef fishes

have attracted far less attention in the scientific community when compared to

other stressors (Sampaio et al., 2021).

Ocean deoxygenation is noted as the third global ocean syndrome but one

that operates on different spatial and temporal scales than warming and acidi-

fication; yet, the term “ocean deoxygenation” was only first defined in 2009

(reviewed in Klein et al., 2020). Since the middle of the 20th century, the

O2 content of the oceans has decreased by more than 0.5–3%, low oxygen

events (1–3.5 O2 mgL�1) are becoming more frequent and severe, and oxygen

minimum zones (OMZs) are expanding (reviewed in Gregoire et al., 2021).

While the causes are not fully understood, it is recognized that this process

involves decreased O2 and heightened biological consumption, which is wors-

ened by enhanced stratification and induced by ocean warming. These

changes, paired with rising ocean temperatures throughout the 21st century

will further accelerate reductions in ocean O2 content (reviewed in Gregoire

et al., 2021; Klein et al., 2020).

3.1.4 pH/CO2

Coral reef fishes are experiencing changes in water pH and CO2 that stem

from elevated atmospheric CO2 (pCO2; partial pressure) due to human-related

emissions (ocean acidification; see above). Increased biological activity in

shallow water habitats associated with coastal development and agricultural/

industrial runoff can also contribute to elevated pCO2, as can the ongoing

global expansion of high intensity aquaculture (reviewed in Munday et al.,

2019). While evolution suggests adaptations are in place for fishes to cope

with such changes to maintain acid-base, ionoregulatory, and osmotic balance

(reviewed in Hannan and Rummer, 2018; also see Chapter 5, Volume 39A:

Eliason et al., 2022, and some extant fish species already live in elevated
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pCO2 environments or experience them on a diel basis (e.g., coral reef fishes

at night when corals shift from photosynthesis to respiration; Hannan et al.,

2020a), laboratory experiments show different responses across species, life

history stage, and exposure duration. Such differences in fitness-related traits,

differential capacity for acclimation and/or adaptation, and the influence of

multiple stressors will factor into predicting these impacts over the timescales

at which CO2 levels are rising.

Changes in environmental pCO2 and/or pH can dramatically affect the most

basic most yet critical physiological processes in fishes—O2 uptake, transport,

delivery, and CO2 removal, let alone ion and osmoregulatory processes (see

Chapter 5, Volume 39A: Eliason et al., 2022). There is an intimate interaction

between O2 and CO2 transport at the gills, and in other tissues, due to their

interactions with Hb within the red blood cells (RBCs), which can vary by spe-

cies (reviewed in Hannan and Rummer, 2018). Generally speaking, most carti-

laginous fishes, such as sharks, skates, and rays, can efficiently compensate an

acid-base disturbance due to the buffering capacity of their blood and plasma

(Berenbrink et al., 2005). Moreover, most sharks, skates, and rays possess rela-

tively pH-insensitive Hbs (Berenbrink et al., 2005), meaning that a pH distur-

bance associated with an acidosis, such as elevated pCO2, may not

compromise O2 transport in the way we understand for teleost fishes. Modern

teleost fishes, such as the coral reef fishes, have a different physiological

response to an acidosis than the cartilaginous fishes. Teleost fishes possess

extremely pH-sensitive Hb—probably evolving nearly 400 million years ago

(MYA) in basal Actinopterygians (reviewed in Randall et al., 2014)—and

low buffering capacity in the blood and plasma. Adrenergically-activated trans-

porters on the RBCs help to regulate pH, and plasma-accessible carbonic anhy-

drase in select locations enhances O2 release from the tissues during an

acidosis, such as elevated pCO2 (Randall et al., 2014; Rummer et al., 2013;

see Fig. 1 in Hannan and Rummer, 2018). These traits result in an enhanced

capacity for O2 transport, especially during conditions that would normally pre-

clude efficient O2 uptake (Randall et al., 2014; Rummer et al., 2013). While

these physiological traits may have facilitated the successful radiation of the

fishes throughout geological history (Randall et al., 2014) and may be impera-

tive in coping with ongoing and future changes in ocean pCO2, it is important

to note that other morphological adjustments (e.g., gill remodeling) and physi-

ological compensation mechanisms, such as bicarbonate-mediated ion exchange

from the environment to correct extracellular pH (Deigweiher et al., 2008;

Heuer and Grosell, 2014) are energetically expensive and may not be sustain-

able over the long term (Lefevre, 2016). Because extracellular pH compensa-

tion is limited by the amount of bicarbonate that can be exchanged (Brauner

and Baker, 2009), teleost fishes can only tolerate and function in extremely

high CO2 conditions for a finite period. Indeed, work has been done in naturally

high pCO2 conditions to understand the various mechanisms that underpin the
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physiological response to elevated pCO2 conditions. For example, within the

coral reefs near natural CO2 seeps pCO2 is similar to that predicted for the

end of the century (i.e., �1000μatm; Munday et al., 2014). These seeps support

diverse communities of coral reef fishes, yet fewer species occur near intense

vents where pCO2 ranges between 5000 and 10,000μatm (reviewed in

Munday et al., 2019). Therefore, these fish likely experience very high

pCO2 for short periods of time. Regardless of the exact mechanism, understand-

ing how coral reef fishes perform at the physiological level under elevated

pCO2 may help in predicting ecosystem-level responses now and into the

future.

Many of the adaptations potentially in place to maintain O2 transport,

CO2 removal, and acid-base, ionoregulatory, and osmotic balance have been

investigated in experimentally high pCO2 settings and include hundreds of

studies (reviewed in Hannan and Rummer, 2018). While a lot of these studies

have focussed on more primitive and basal fishes and/or were for purely

mechanistic understandings, there has been a surge of studies since the begin-

ning of the 21st century investigating the physiological responses, acclimation

processes, and adaptive capacity of coral reef fishes under ocean acidification

relevant conditions. Such studies on coral reef fishes have spanned life history

stages, species, activity levels, and habitats. Some of the first studies investi-

gated larvae of the orange clownfish, Amphiprion percula, and the spiny chro-

mis, A. polyacanthus. While elevated pCO2 had no detectable effects on

embryonic development, hatching time, or survival, let alone swimming per-

formance, in orange clownfish, there were substantial increases in growth

rates noted (Munday et al., 2009b). A study on spiny chromis also detected

no effects of elevated pCO2 in terms of growth or skeletal (i.e., otolith, ear

bone) development (Munday et al., 2011a), which was surprising, as the basic

chemistry associated with elevated pCO2 and reduced carbonate saturation

states would suggest an impact on bone calcification. However, exposure to

much higher pCO2 levels did result in larger otoliths in orange clownfish,

which may be associated with increased acid-base regulation and increased

precipitation of CaCO3 (Munday et al., 2011b). It may be that coral reef fish

species physiologically tolerate elevated pCO2 levels because of the daily

cyclic changes they already experience on the reef (Hannan et al., 2020a;

Jarrold and Munday, 2018a,b). However, similar findings have been docu-

mented for large, highly mobile, pelagic, and widely distributed fish species

as well, such as cobia, Rachycentron canadum, mahi-mahi, Coryphaena hip-
purus, and kingfish, Seriola lalandi (Bignami et al., 2013, 2014; Frommel

et al., 2019; Laubenstein et al., 2018; Pan et al., 2020). Yet, these studies

examined larval and juvenile stages of the pelagic species that likely also

use shallow, nearshore habitats that would experience natural cycles of ele-

vated pCO2; however, when juvenile kingfish are reared under much higher,

recirculating aquaculture system relevant pCO2 levels, negative impacts on

growth, swimming, and metabolism can be detected (Pan et al., 2020).

22 Fish Physiology Volume 39B

ARTICLE IN PRESS



Studies on adults of reef-associated pelagic species are needed, as they are

expected to be much more heavily impacted by elevated pCO2 (Munday

et al., 2016), but such studies are logistically challenging.

Other work on coral reef fishes has focussed on adult physiological perfor-

mance and fitness-related behavioral traits in response to climate change rel-

evant pCO2 levels. Some of these results support the notion that teleost fishes

can maintain aerobic performance under a mild pH disturbance, such as after

short term exposure (e.g., weeks) to elevated pCO2 conditions, possibly due to

their unique capacity for maintaining O2 transport (Rummer et al., 2013).

These findings for maintained or enhanced performance (Couturier et al.,

2013; Rummer et al., 2013) differ from the 47% decrease in aerobic scope

observed in coral reef cardinalfishes exposed to similar CO2 levels (Munday

et al., 2009a). Yet, there may, indeed, be species specific differences

(Couturier et al., 2013). Such differences may be related to when those spe-

cies might be most active (diurnal vs nocturnal) and experiencing the highest

pCO2 levels in their natural reef habitats (exposure to constant elevated vs.

fluctuating elevated pCO2 levels) (Hannan et al., 2020a, 2020b, 2020c). For

example, nocturnal cardinalfishes (e.g., C. quinquelineatus) have been found

more sensitive to elevated, fluctuating pCO2 levels (e.g., in terms of swim-

ming and aerobic performance) than their diurnal counterparts (Hannan

et al., 2021). Shallow water, benthic elasmobranchs such as the epaulet

(H. ocellatum) and white spotted bamboo (Chiloscyllium plagiosum) sharks,
as well as reef sharks that use shallow, lagoonal habitats as newborns (e.g.,

Carcharhinus melanopterus) exhibit minimal effects upon exposure to ele-

vated pCO2 conditions, even though elasmobranchs in general exhibit a slight

yet significant negative response to ocean acidification relevant elevated

pCO2 conditions (reviewed in Rosa et al., 2017; Pereira Santos et al., 2021;

Rummer et al., 2022). Some of these findings may be related to differences

in physiological adaptations to maintaining performance under a mild acido-

sis, but various behavioral alterations as a result of exposure to elevated

pCO2 have been identified as well.

The physiological mechanisms underpinning altered behaviors (e.g.,

responses to alarm cues, behavioral lateralization, anti-predator responses

(Allan et al., 2013), including fast-starts and reactions to chemical alarm cues,

and sheltering), are likely related to acid–base regulatory processes interfering

with γ-aminobutyric acid (GABA) receptor function (see fig. 4 in Schunter

et al., 2018). The GABA-A receptor is the primary inhibitory neurotransmitter

receptor in the vertebrate brain (Hamilton et al., 2014; Nilsson et al., 2012).

Normally, ion gradients over the neuronal membrane result in an inflow of

chloride (Cl�) and bicarbonate (HCO3
�) upon binding of the GABA-A recep-

tor, which then leads to hyperpolarization and neuron inhibition. However,

when fish are exposed to elevated pCO2, pH compensation will change ion

concentrations (see Fig. 1 in Hannan and Rummer, 2018) that could alter

the receptor function and therefore could explain the behavioral changes that
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have been noted in coral reef fishes upon exposure to elevated pCO2 (Nilsson

and Lefevre, 2016). Depending on the magnitude of changes in these ions dur-

ing acid–base regulation, resultant alterations in ion gradients could either

potentiate GABA-A receptor function or reverse its action, making it excit-

atory rather than inhibitory (Heuer and Grosell, 2014). Indeed, Heuer et al.

(2016) were the first to pair some of the key behavioral assays with measure-

ments of relevant intracellular and extracellular acid-base parameters in spiny

chromis (A. polyacanthus) exposed to elevated pCO2. Even vision is related to

GABA-A receptor function, as the negative effects of elevated pCO2 exposure

on A. polyacanthus retinal function—where impairments could preclude a

fish’s capacity to quickly respond to threatening events—can be counteracted

upon exposure to a GABA antagonist (Chung et al., 2014). Also, the effects of

elevated pCO2 on fish behavior and sensory abilities occur when fish are

exposed to levels >600μatm pCO2, which is well within climate change rele-

vant ocean acidification levels for the 21st century (Munday et al., 2010,

2012). Interestingly, few behavioral effects have been detected upon exposure

to levels below 600μatm and none below 500μatm pCO2, which are levels

that would resemble summer night time hours on most coral reefs (Hannan

et al., 2020a). Therefore, behaviors (i.e., via acid-base regulation) may also

be adapted to the daily fluctuations in pCO2 fishes experience within coral

reefs, however, those behaviors could be sensitive to continuously elevated

(as opposed to fluctuating) pCO2 conditions. Studies that link the timing of

behavioral and acid–base regulatory responses to pCO2 fluctuations in coral

reef environments have since been important in determining thresholds for

ocean acidification relevant pCO2 levels and daily pCO2 fluctuations.

Understanding species-, context-, and temporally specific effects of ele-

vated pCO2 on certain fitness-related traits is critical. However, molecular

responses that underpin developmental, parental, and transgenerational effects

of elevated pCO2 will be key in determining the long-term implications for

coral reef ecosystem health. Predicting the potential for acclimation and adap-

tation cannot be done by acutely exposing animals to elevated pCO2 for days

to weeks alone. Moreover, conditions experienced early in life can affect—via

developmental plasticity—how an organism responds to those conditions later

in life, which can also be mediated epigenetically (Schunter et al., 2018). The

environment experienced by the parents can also influence how offspring

respond (Munday, 2014; Schunter et al., 2016). Indeed, studies investigating

transgenerational effects of elevated pCO2 exposure demonstrate that meta-

bolic performance and growth rates are recovered in juvenile fish when both

parents and offspring are exposed to elevated pCO2 (Miller et al., 2012).

Heritability can underpin variations in the responses that offspring exhibit in

response to elevated pCO2, which may be based on parental environments

and responses (Welch and Munday, 2017). In A. polyacanthus, altered gene

expression for the majority of within-generation responses return to baseline

levels following parental exposure to elevated pCO2 conditions, suggesting
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that both parental variation in tolerance and transgenerational exposure to ele-

vated pCO2 are crucial factors supporting the response of coral reef fishes

to ocean acidification relevant conditions (Schunter et al., 2018). Indeed,

long-term developmental and generational studies will be important in under-

standing the role of individual variation in how coral reef fish species respond

to elevated pCO2, which will collectively be key in understanding and predict-

ing the effects of elevated pCO2 on populations and their capacity to adapt

(Vargas et al., 2017).

3.1.5 Noise

Sound pollution or anthropogenic noise in the marine environment may origi-

nate from boat noise (commercial shipping, fishing, cruise, and recreational

motorboats), seismic testing, and pile driving, activities that have all increased

dramatically since the Industrial Revolution due to urbanization, resource

extraction, tourism, and transportation. Anthropogenic noise is changing nat-

ural soundscapes worldwide (Duarte et al., 2021). Near coral reefs, anthropo-

genic noise predominantly comes from boat noise and, as such, is becoming

recognized in international legislation as a prevalent and increasing anthropo-

genic pollutant (International Maritime Organization, 2014). However, it is

important to distinguish between frequencies of sounds that naturally occur

on the reefs (i.e., and their importance to fish health) and in the marine envi-

ronment (e.g., 20Hz—15kHz, the sounds of the reefs, snapping shrimp, fish

calls ranging from popping, trumpeting, to banging sounds, and the crushing

of coral by parrotfishes as they feed), from artificial sounds associated with

noise pollution (Gordon et al., 2018; Simpson et al., 2005a).

The Great Barrier Reef, Australia, has been the setting for work investigat-

ing the effects of anthropogenic noise on coral reef fishes, spanning species,

life stages, experimental approaches, and exposure simulations (Gordon

et al., 2018). This site is highly impacted by anthropogenic noise, and increas-

ingly so, with predictions that 0.5 million recreational motorboats will be

using the GBR by 2040 (GBR Marine Park Authority outlook report 2014).

Motorboat noise affects physiological processes in coral reef fishes that can

impact parental care (Nedelec et al., 2017a), navigation (Holles et al.,

2013), foraging (Voellmy et al., 2014), surviving a predator threat or predator

avoidance (Simpson et al., 2016), and various aspects of morphological devel-

opment (Fakan and Mccormick, 2019). The physiological mechanisms under-

pinning these impacts are likely via metabolic (Simpson et al., 2016) and

endocrine pathways (e.g., androgen/glucocorticoid pathways) and may also

interact with how fish species respond to additional anthropogenic stressors

(Mills et al., 2020).

Some species may be more sensitive to detecting sound pressure and

frequency than others (Colleye et al., 2016), and both preconditioning

(Staaterman et al., 2020), exposure duration, and the timeline over which
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sound impacts a fish (Egner and Mann, 2005; Parmentier et al., 2009; Wright

et al., 2005, 2011) are also important. While closely related damselfish spe-

cies can respond differently to anthropogenic noise (Fakan and Mccormick,

2019), populations of the same species may also respond differently. For exam-

ple, populations of Halichoeres bivittatus living in noisy areas had differing

levels of baseline stress (measured as whole-body cortisol) than populations liv-

ing in quiet areas (Staaterman et al., 2020). Indeed, the period of noise exposure

matters as well, being brief or acute, or chronic (Holmes et al., 2017; Mills

et al., 2020; Nedelec et al., 2016, 2017b; Staaterman et al., 2020). Moreover,

some species (e.g., Ambon damselfish, P. amboinensis) may habituate or desen-

sitize to boat noise over extended periods as well (Holmes et al., 2017). Timing

of exposure and associated effects in coral reef fishes may also have a lot to do

with development. Of the 100 families of coral reef fishes, 36 families are broo-

ders. They lay their eggs within the reef matrix, and parents often guard these

eggs, during which time boat traffic and other anthropogenic noise could influ-

ence developmental milestones. This is all assuming that coral reef fishes have

developed auditory sensory organs sufficiently while still developing in the egg

and upon hatching, which is likely species specific. However, it has been deter-

mined for two species so far (i.e., Amphiprion melanopus and A. polyacanthus)
that the effects of noise pollution begin during embryogenesis (Fakan and

Mccormick, 2019). Regardless, the developing embryos, upon hatch either stay

on the reef (i.e., where they may continue to experience anthropogenic noise) or

leave for the pelagic where they spend weeks to months. For those species with

a pelagic larval stage, navigating back to the coral reefs (i.e., whether natal or

new) to settle is a crucial component of life history and may involve cues, such

as the sounds of the reef (Simpson et al., 2004). These critical life history

stages, if affected, could not only impact proper growth, development, and set-

tlement of coral reef fish species, but could also impact demography and distri-

bution patterns and therefore ecosystem health (Fakan and Mccormick, 2019).

Various methods have been used to physiologically assess the effects of

anthropogenic noise on coral reef fishes and under different simulated sounds-

capes. Approaches assessed various levels of the stress response and have

used heart rate monitoring, stress hormone analyses, the Auditory Brainstem

Response (Egner and Mann, 2005), and Auditory Evoked Potential (AEP)

audiometry (Colleye et al., 2016; Parmentier et al., 2009). Indeed, via the pri-

mary stress response, exposure to anthropogenic noise can result in increased

glucocorticoid levels in fishes (Mills et al., 2020; Staaterman et al., 2020). Via

the secondary stress responses, exposure to anthropogenic noise can result in

increases in blood glucose and hematocrit (Filiciotto et al., 2013), and meta-

boloic rates can be altered as well (Simpson et al., 2005b; Staaterman et al.,

2020). Indeed, Simpson et al. (2005b) and Jain-Schlaepfer et al. (2018) used

changes in the secondary stress response (i.e., heart rate) to assess the acoustic

sensitivity of early life stages of coral reef fishes. They found that clownfish

embryos (Amphiprion ephippium and A. rubrocinctus) exhibit increased
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heartrate in response to noise, and their sensitivity increases across develop-

ment from fertilization to near hatching (Simpson et al., 2005b). Via the ter-

tiary stress response, exposure to anthropogenic noise can affect various

aspects of movement (Holmes et al., 2017; Picciulin et al., 2010) that may

be important for schooling and foraging as well as anti-predator behaviors

(Simpson et al., 2015), parental care (Nedelec et al., 2017a; Picciulin et al.,

2010), interactions between species (Nedelec et al., 2017b) and survival

(Simpson et al., 2016). Studies often use playbacks of recorded sounds or real

noise, which has been helpful in translating findings to management solutions.

For example, exposure to the sound profile of a two- versus a four-stroke

engine resulted in twice the stress response in Amblyglyphidodon curacao
damselfish embryos, as measured by changes in heart rate ( Jain-Schlaepfer

et al., 2018) and twice the response at the level of escape performance in

whitetail damselfish, Pomacentrus chrysurus (McCormick et al., 2019a). As

a result, boat noise is starting to be included in environmental management

plans as a stressor, and recommendations can be made regarding boat engine

type based on empirical evidence. Anthropogenic noise is an area of research

that will continue to grow into the Anthropocene.

3.1.6 Salinity

Salinity stress or iono- or osmo-regulatory stress (see Chapter 5, Volume 39A:

Eliason et al., 2022) in relation to changes in environmental salinity have not

been heavily investigated in coral reef fish species. Given that coral reef fish

species are not as prone to such scenarios compared to estuarine and

mangrove-dwelling species, this is expected. However, extreme scenarios do

exist for coral reef fishes. For example, in areas such as the environmentally

challenging Arabian/Persian Gulf, coral reef fish species (e.g., black-spot snap-

per, Lutjanus ehrenbergii and yellowbar angelfish, Pomacanthus maculosus)
can incur the life-history and metabolic costs of osmoregulation in hypersaline

environments, which are reflected in growth various parameters (D’Agostino

et al., 2021). On a more temporal basis, reefs in some areas (e.g., Kaneohe

Bay, Hawai’i) can succumb to storm flooding and freshwater inundation,

making for hyposaline challenges and even mortality for resident fish species

( Jokiel et al., 1993). Mechanistic studies (e.g., in the economically valuable

coral trout, P. maculatus and Plectropomus leopardus, and also associated with

capture stress; Frisch and Anderson, 2005) have been done including determin-

ing salinity preference (Serrano et al., 2010) and understanding the role of salin-

ity in modulating reproductive hormones (Hung et al., 2010) and stress (e.g.,

heat shock proteins and cytoprotection; Tang et al., 2014a). In many cases,

changes in gill morphology are observed, sodium potassium pump (Na+, K+,

ATPase) activities and Na+, K+, 2Cl� cotransporter proteins are measured

and/or isoforms assessed to determine a coral reef fish’s status in hypo- or

hyper-saline conditions (Tang et al., 2014b). Studies have also been designed

for applied outcomes, such as for streamlining aquaculture practices,
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understanding range expansions for invasive species (e.g., lionfishes; Jud et al.,

2014; Schofield et al., 2015), and interpreting interactions with other stressors.

It is important to note, however, that some coral reef associated species may use

estuarine and mangrove habitats as nursery areas and may therefore experience

salinity fluctuations (Prodocimo and Freire, 2001; Shirai et al., 2018). However,

still, few studies have investigated these issues specifically in coral reef fish

species.

3.1.7 Pressure/depth

Studies assessing pressure and depth relationships in coral reef fishes have

been largely from a mechanistic perspective or an ecological perspective, with

few if any evaluating pressure or depth as a pervasive anthropogenic stressor.

Studies have assessed the role of pressure—and therefore depth—on various

components of vision in four coral reef fish species, yellowstripe goatfish (Mul-
loidichthys flavolineatus), manybar goatfish (Parupeneus multifasciatus), con-
vict surgeonfish (Acanthurus triostegas), and (orangespine unicornfish) Naso
lituratus, and concluded a minor role of habitat depth with ocular transmission

(Nelson et al., 2003). Other studies have assessed the role of depth or pressure

in modulating the release of brain hormones important for circadian rhythms

(e.g., including dopamine, serotonin, etc.), reproductive hormones (e.g., follicle

stimulating and luteinizing hormones) and environmental cues such as time of

day with respect to important ecological processes (e.g., spawning synchrony

in threespot wrasse, Halichoeres trimaculatus; Takemura et al., 2010, 2012)).

Indeed, reproduction seems to be the most sensitive to pressure and depth,

but it is important to note that it may be challenging to disentangle the effects

associated with depth from those related to light. Depth has a negative impact

on ovarian development in the sapphire devil, Chrysiptera cyanea (Fukuoka

et al., 2017). In contrast, an opposite relationship was found upon comparing

bicolor damselfish (Stegastes partitus) between shallow (<10m), deep shelf

(20–30m), and mesophotic (60–70m) reefs. Populations were less dense, but

individuals were older and larger on the deeper reefs with potentially longer life

spans, a broader diet niche, and higher reproductive investments producing high

condition larvae, when compared to shallow reefs (Goldstein et al., 2016,

2017). Indeed, there has been an eco-physiological component to these studies

that, while not directly addressing pressure and depth as anthropogenic stres-

sors, have investigated shifts and requirements for species distribution as habitat

suitability declines with the continuing global loss of shallow water reefs.

3.1.8 Turbidity

Since the middle of the 20th century, many nearshore coral reefs have experi-

enced decreasing water quality, in particular increasing turbidity and increasing

concentrations of suspended sediments (often referred to as total suspended

solids, TSS), due to coastal development, land conversion, mining, shipping,
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and dredging (Foley et al., 2005; Syvitski et al., 2005). Although often used

interchangeably, often complementary, and both indicate the clarity of the

water, turbidity and TSS measure different things. Turbidity examines at how

well a light passes through liquid, while TSS is a quantitative expression of

suspended particles. Indeed, increasing TSS concentrations are leading to

changes in the composition of fish assemblages on coastal reefs (Bejarano

and Appeldoorn, 2013; Cheal et al., 2013; Moustaka et al., 2018), either indi-

rectly through changes in benthic composition and/or directly through impacts

on the fishes themselves (Fabricius et al., 2005; Hamilton et al., 2017). Yet,

the direct effects of TSS exposure and other sources of turbidity on the physi-

ology of coral reef fishes have been seldom investigated, until recently.

Some of the most profound physiological effects of TSS exposure in

coral reef fishes have been observed at the gills. Orange-spotted grouper

(Epinephelus coioides) exhibit a decrease in gas diffusion distance at the gill

in response to suspended sediment exposure (Wong et al., 2013). However,

suspended sediments can also directly damage the gill epithelium. Studies

found shortened gill lamellae (Hess et al., 2017; Lake and Hinch, 1999;

Sutherland and Meyer, 2007), increased growth of protective cell layers,

which increases gas diffusion distances (Cumming and Herbert, 2016; Hess

et al., 2015; Lowe et al., 2015), and an increase in mucous secretion (Hess

et al., 2015; Humborstad et al., 2006). Moreover, coral reef fishes exposed to

elevated suspended sediment levels exhibit gill microbiome shift from

“healthy” to pathogenic bacterial communities, which can further compromise

immune function (Hess et al., 2015). All of these changes can reduce gas

exchange efficiency and interfere with oxygen uptake across the gills (Evans

et al., 2005; Lappivaara et al., 1995). That said, it may not be surprising that

exposure to suspended sediments can decrease maximum oxygen uptake rates

(ṀO2max) in juvenile anemone fish, A. melanopus, and increase resting oxygen

uptake rates (ṀO2rest, a proxy for metabolic costs required to sustain basic met-

abolic functions) (Hess et al., 2017). These changes can reduce aerobic scope

(i.e., difference betweenṀO2max andṀO2rest) and thus overall capacity for aer-

obic activity. A reduction in aerobic scope can affect aerobic activities such as

growth and development, with negative consequences for the survival and fit-

ness of fishes (Norin and Clark, 2016). In contrast, however, two confamilial

species, A. percula and A. melanopus, have been found to maintain aerobic per-

formance, despite changes in gill morphology following suspended sediment

exposure (Hess et al., 2017).

While the consequences of gill alterations to aerobic metabolism and per-

formance may seem straightforward, the effects of suspended sediment expo-

sure on anerobic metabolic pathways and performance traits are not as clear.

Sediment-exposed coral reef fish species, such as juvenile anemonefish

(A. melanopus) can respond faster to a mechanical stimulus, achieve higher

escape speeds and acceleration, and escape further distances than their control

counterparts (Hess et al., 2019). This kind of response counters what is
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expected when fish are exposed to other stressors (e.g., elevated tempera-

tures). However, visual acuity is reduced for fishes living in turbid waters,

which could also impact predator detection times. Therefore, the effects of

suspended sediments on escape performance may be more related to the

behavioral changes that are required as fish increase vigilance and perceived

predation risk in turbid waters than direct effects of TSS on physiological

mechanisms. Indeed, newly settled Chromis atripectoralis are preyed upon

by an ambush predator, P. fuscus, much more heavily under medium suspended

sediment concentrations (Wenger et al., 2013). It is important to note that the

effects of suspended sediment exposure on aerobic metabolic pathways could

impact a coral reef fish’s capacity to recover from these anerobically driven

responses. Increased vigilance can also increase metabolic costs due to trade-offs

associated with activity and foraging (Killen et al., 2015). Over the longer-term,

this could result in non-consumptive costs (e.g., compromised immune function,

or reductions in growth and condition) (Hawlena and Schmitz, 2010). Regard-

less, predator escape performance plays an important role in predator-prey

interactions, and any changes whether physiological, behavioral, or a combina-

tion of both, are likely to directly influence survival of juvenile and adult fishes

on coral reefs (McCormick et al., 2018). Finally, it is important to note, like with

many of the stressors affecting coral reef fishes today, seldom does one stressor

occur in isolation (e.g., in the wild, TSS may contain pollutants; increased tur-

bidity may co-occur with the warmest seasons and therefore elevated tempera-

tures, flood plumes and storms; dredging and coastal maintenance and thus

increased noise, etc.); therefore, their effects cannot be assumed independent

from other abiotic or biotic influences—this is an area requiring much more

investigation.

3.2 Biotic stressors

Biotic stressors arise from living organisms and can originate from natural

and anthropogenic sources. The most pervasive, individual biotic stressors

include prey abundance, predator threats, parasites, and disease.

3.2.1 Prey abundance

Changes in prey abundance—in some cases related to starvation, dietary shifts

over temporal (e.g., ontogeny) and spatial scales, trophic interactions,

resource partitioning, and food webs represent the largest biotic stressors stud-

ied in coral reef fishes. One of the most common approaches used to discern

these relationships is via stable isotope analysis of bones and tissues. Stable

isotopes of nitrogen, carbon, sulfur, and oxygen can be useful in determining

trophic position of consumers and nutrient sources (i.e., linking consumers to

their food sources; Speed et al., 2012a), influential factors in the environment

(e.g., flow velocities, substrate type, amount of rainfall, and possibly temper-

ature), oxidation/reduction conditions of certain habitats, and overall habitat

use (Bouillon et al., 2008). Changes in certain stable isotopes over time can
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be useful in determining diet switching or habitat shifts. Moreover, because

different tissues respond at different rates, they can provide a time history

of diet and habitat use. The widely used stable isotope approach does not

directly assess physiological stress in coral reef fishes. The approach can,

however, help infer when there are resource-use overlaps and trophic redun-

dancies in certain ecosystems, ecologically distinct regions, and can provide

baseline information to help identify potential for fisheries pressure or other

anthropogenic stress (e.g., in elasmobranchs; Morgan et al., 2020; Peterson

et al., 2020).

Metabolic responses to different feeding regimes, starvation, digestion and

assimilation rates (e.g., specific dynamic action; SDA) have been examined in

many coral reef fish species. Such approaches may be especially important

during the larval stage, with the extremely high mortality rates (see above)

and rapid growth rates that require a large supply of planktonic prey

(reviewed in McLeod and Clark, 2016). With increasing temperatures result-

ing from climate change, tropical marine plankton communities, which are the

primary food sources for larval coral reef fishes, are predicted to shift in com-

position and distribution. This could very well result in a mismatch between

coral reef fish larvae and their prey. Studies assessing metabolic costs to dif-

ferent food rations as well as determining the energetic budgets of different

feeding regimes (e.g., A. percula, McLeod et al., 2013; McLeod and Clark,

2016) provide important information for assessing individual performance

and predicting recruitment success and ecosystem health under various stres-

sors. In controlled laboratory studies, this is an interesting avenue, given that

many protocols feed experimental animals ad libitum, which could be mask-

ing the effects of other treatments (e.g., McMahon et al., 2018, 2019). Such

food ration and feeding regime information are useful for applied outcomes

as well, such as in ensuring efficient aquaculture practices and in understand-

ing adverse effects of eco-tourism provisioning and other non-consumptive

wildlife activities (Birnie-Gauvin et al., 2017). For example, in the Cook

Islands, tourists often feed bread to threadfin butterfly fish (Chaetodon
auriga) and striated surgeonfish (Ctenochaetus striatus), which results in

reductions in their foraging on natural food sources (Prinz et al., 2020). Some

reef sharks may shift their behaviors in response to long-term provisioning.

For example, at a long-term provisioning site in French Polynesia, blacktip

reef sharks (C. melanopterus) now exhibit smaller home ranges and have

changed how they use their habitat (Mourier et al., 2021). Interestingly, after

tourism activities ceased for six consecutive weeks (i.e., due to COVID-19

pandemic lockdowns in 2020), all animals left the area, and pre-lockdown

abundances were not restored for at least 1 month after tourism resumed

(S�eguigne, 2022). However, some species exhibit no effect of provisioning

at all, like Caribbean reef sharks (Carcharhinus perezi; Maljkovic and Cote,

2011) and juvenile lemon sharks (Negaprion brevirostris; Heinrich et al.,

2020). In the latter species, provisioning neither affected spatial distribution

nor mean daily activity or energy requirements, but lemon sharks did start
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exhibiting anticipatory behaviors as soon as 11 days following regular provi-

sioning (Heinrich et al., 2020).

Dietary stress and the effects of food availability on trophic interactions

can also be assessed via the microbiome, which, with the advent of high

throughput sequencing, has become much cheaper, faster, and informative.

Given the important role the gut microbiome has in nutrient acquisition and

pathogen resilience, establishing baseline data and having a rapid means for

determining dietary stress (e.g., as in surgeonfishes, Family Acanthuridae;

Miyake et al., 2015) will increase in importance, especially with interacting

anthropogenic stressors. Coral reef fish species inhabiting disturbed reefs have

changes in gut bacterial composition and fermentative bacteria ratios, suggest-

ing that this disturbance not only affects the gut microbiome community but

also impacts ecosystem function through microbial processes (Cheutin et al.,

2021). But moreover, coral reef fishes living in reefs characterized by high

suspended sediment concentrations exhibit changes in gill microbiome as

well, with implications toward immune function, metabolic performance,

growth, and development (Hess et al., 2015). Indeed, this approach can also

elucidate feeding stress in post-disturbance reefs (e.g., following coral bleach-

ing, Fig. 1, or crown-of-thorns starfish outbreaks). Finally, if gastrointestinal

microbial fauna, which is fundamental to fish health, is not flexible enough

to accommodate new habitats and food sources (e.g., rabbitfish, Siganus fus-
cescens; Jones et al., 2018), this may be problematic as coral reef fish distri-

bution patterns and ranges change due to ocean warming.

3.2.2 Predator threats

The primary ecological interaction between organisms that most significantly

shapes selection and fitness is predation (i.e., eat, but do not get eaten); coral

reef fishes are no exception. Because most coral reef fishes produce larvae

that spend some portion of early life in the pelagic before settling onto new

or natal reefs, predation is a serious threat. Settling juveniles are small and

naı̈ve (Almany and Webster, 2006); thus, the time around settlement can be

a life-history bottleneck for coral reef fish populations due to predation

mortality. Moreover, many coral reef fishes occupy low to mid trophic levels,

meaning they are subject to piscivory through all life stages. While predator-

prey dynamics represent naturally occurring stressors within coral reef ecosys-

tems, continued human exploitation of reef predators, habitat degradation

(i.e., nurseries, shelter; McCormick et al., 2019b), and additional stressors into

the Anthropocene will potentially further alter coral reef fish population

dynamics and ecosystem health.

While much work on predator threats has been from an ecological per-

spective, most predator-prey interactions have physiological underpinnings

(Palacios et al., 2016). This includes vast array of body morphologies, color

changes (e.g., mimicry, Cortesi et al., 2015), and chemical defenses (e.g.,

toxic gobies, Gratzer et al., 2015, but also toxins from other non-fish species,

32 Fish Physiology Volume 39B

ARTICLE IN PRESS



like polychaetes, sponges, soft corals, etc.). Predator-prey interactions, per-

haps especially on coral reefs, also represents an area where non-consumptive

effects (NCEs) have been well-investigated (Mitchell and Harborne, 2020).

Indeed, NCEs due to the risk, fear, and other non-lethal interactions associated

with predator-prey dynamics can change prey behavior, physiological per-

formance, such as metabolism and swimming, morphology, and development,

which may result in changes in distribution patterns and overall fitness

(Arvizu et al., 2021; Hess et al., 2019; Mitchell and Harborne, 2020).

Ultimately, most physiological underpinnings of predator-prey dynamics

are associated with the primary (e.g., catecholamine release) and secon-

dary (e.g., glucocorticoid release) stress responses and metabolic performance

(e.g., escape responses). Glucocorticoids can cross the blood-brain barrier

(e.g., unlike most catecholamines) and therefore interact with receptors in

several brain regions meaning their role in the stress response is quite impor-

tant in modulating behaviors (reviewed in Soares et al., 2012). Cleaning

gobies (Elacatinus evelynae) release cortisol when encountering a “client”

that could be a potential predator, but of the “fight,” “flight,” or “freeze”

responses typically associated with stress, E. evelynae exhibits more of a

“fight” response by cleaning more thoroughly and being more proactive,

which may be an effort to reduce predatory danger or conflict (Soares et al.,

2012). The metabolic and neurophysiology that underpins fast-start, escape

responses and are triggered by an approaching predator include anerobically

powered myotomal blocks of fast glycolytic muscle and Mauthner neurons

in the brain (reviewed in Allan et al., 2013; Ramasamy et al., 2015). However,

behavioral lateralization—the preferential use of one side of the body or

another (Domenici et al., 2012)—is another trait that is key to predator escape

responses (Ferrari et al., 2017). Escape performance in coral reef fishes, over-

all, has been well investigated in many species, and whether fast starts or

lateralized movements, both reveal a high degree of inter, intra-specific and

within-individual plasticity (Allan et al., 2013, 2014, 2015, 2017, 2020). Such

capacity to modulate these responses may be beneficial given the “high cost

of repaying O2 debt” upon an exhaustive challenge and the metabolic (e.g.,

stress) and behavioral disruption associated with escape responses (Allan

et al., 2015). Additional energy saving occurs, as coral reef fishes can

discriminate between predator and non-predator, which can be detected in

certain metabolic traits and honed with a history of predator exposure (Hall

and Clark, 2016; Ramasamy et al., 2015). When juvenile spiny chromis

(A. polyacanthus) are pre-exposed to visual or olfactory predator cues, they

exhibit stronger escape response (i.e., reduced latency, increased escape

distance, mean response speed, maximum response speed and maximum

acceleration) than if they had no prior experience (Ramasamy et al., 2015).

Although morphological and performance variables are most often measured

in response to predator interactions, the behaviors associated with these traits

ultimately have the strongest effects on survival (McCormick et al., 2017).
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The larval life stage of coral reef fishes is challenging to investigate

because of its narrow window of time; yet, this stage has been the focus of

the majority of predation studies on reef fishes (Almany and Webster,

2006). Yet, traits developed during this phase—such as, but not limited to,

growth rates, body condition, lipid content, swimming, boldness, and escape

performance—influence overall survival (e.g., in Pomacentridae, Booth and

Beretta, 2004; Hoey and McCormick, 2004; Figueira et al., 2008; Fuiman

et al., 2010). Even while parents are guarding eggs, predator threats can alter

maternal cortisol levels (e.g., in Pomacentrus amboinensis), which can influ-

ence larval morphology via stress responses (McCormick, 1998). Embryonic

cinnamon clownfish, A. melanopus, while in ovo, that are exposed to conspe-

cific chemical alarm cues or conspecific alarm cues combined with predator

cues respond by modulating their heart rate. This response indicates that they

can detect and react to cues suggesting a conspecific has been injured. More-

over, they can also use such information to learn about predation, all of which

may influence development and behavior (Atherton and McCormick, 2015).

Evidence also suggests a strong transgenerational (i.e., parental) effect of

predator recognition exists in coral reef fishes (Atherton and McCormick,

2020). If coral reef fishes are continuously exposed to high-risk conditions,

they exhibit behavioral and physiological antipredator traits that are important

when faced with an actual predator interaction, suggesting a strong ontoge-

netic pre-conditioning role (Ferrari et al., 2015a). Indeed, plasticity in traits

and “as needed” responses may be key for some species, as predation is not

always strong enough, consistent in space or time, and not always unidirec-

tional to result in genetic adaptations and may also promote greater resilience

in species as habitats continue to change (i.e., habitat degradation) into the

Anthropocene (McCormick et al., 2019b).

3.2.3 Parasites

Parasites remain poorly studied due to sheer numbers and their cryptic nature;

yet, parasites constitute the majority of biodiversity found on coral reefs

(Sikkel et al., 2018). Parasitic interactions in coral reef fishes are exacerbated

in the Anthropocene due to habitat loss, water quality reductions, and

top-level predator removal (Artim et al., 2020). Among coral reef fishes, spe-

cies that are commonly cultured as ornamentals and key for the aquarium

industry are subject to parasites, often due to high density holding and

immune suppression. However, parasites also occur in the wild naturally.

Classic examples include grooming and cleaning stations (Grutter et al.,

2003). While the diversity of parasites that interact with coral reef fishes is

largely unknown, estimates suggest that there could be as many as 20 different

parasite species for every coral reef fish species on the Great Barrier Reef and

New Caledonia (reviewed in Justine et al., 2012). With this high diversity of

parasites ranging from various worms, (e.g., flatworms such as Turbellaria,

Monopisthocotylea, Polyopisthocotylea, Digenea, and Cestoda; roundworms,
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such as Nematoda; thorny-headed worms such as Acanthocephala; segmented

worms, such as Hirudinea), protozoans, copepods, and isopods, and the array

of associated infection and removal strategies, it follows that there would also

be a vast suite of physiological effects assessed in coral reef fishes.

The most common stress associated with parasitic interactions in coral reef

fishes is documented as changes in growth and development, but immune sup-

pression, reductions in reproduction, and other metabolic costs are common

Indeed, when ectoparasitic isopods infect the five-lined cardinalfish, Cheliodip-
terus quinquelineatus, they experience reductions in growth (e.g., 20% decrease

in body mass) and reproductive output (e.g., 42% fewer ova) (Fogelman et al.,

2009). In other fish species, these ectoparasitic isopods cause reductions in aer-

obic scope and swimming performance, including reductions in fast starts

(Allan et al., 2020; Binning et al., 2013; €Ostlund-Nilsson et al., 2005). While

it has also been found that interactions between cleaner fishes and their clients

may elicit pathogen transmission and disease transfer (reviewed in Narvaez

et al., 2021), it is also important to note that cleaner fish interactions with their

clients can also elicit benefits beyond parasite removal (e.g., tactile stimulation;

Paula et al., 2015, and stress reduction; Paula et al., 2019).

Blood samples can be used to determine the degree of the immune

response (e.g., leukocytes, granulocytes, etc.), blood loss (e.g., hematocrit),

and hormone levels (e.g., cortisol, reproductive hormones; Allan et al.,

2020), all of which can affect growth, aerobic performance, and reproduction

(Demaire et al., 2020). Not only can these physiological effects be detected in

the presence of a parasite, but such parameters may also represent trade-offs if

the fish is unable to rid itself of parasites, for example, via the use of mutual-

istic cleaning stations (Demaire et al., 2020). Many ectoparasites that exter-

nally attach to their host fish can increase the drag of the host fish and

therefore impact swimming and escape kinematics and behaviors, while

increasing overall metabolic costs (e.g., bridled monocle bream, Scolopsis
bilineata, Binning et al., 2013, 2014; Ambon damselfish, P. amboinensis,
Allan et al., 2020). Effects of ectoparasites can vary by species and the size

of the fish, among other factors, including diurnal as opposed to nocturnal

species (Cook et al., 2015). For example, French grunt (Haemulon flavolinea-
tum) and brown chromis (Chromis multilineata) are closely related species

and both commonly infected by an isopod (Anilocra spp.), but the energetic

effects (i.e., as per condition factor, percent moisture in the muscle tissue,

total muscle tissue calories, and gut content volume) were different between

species (Welicky et al., 2018), highlighting that such generalizations cannot

always be made. Other infections can occur via consumption of an intermedi-

ate host. This is the case with blood flukes, which often enter fish hosts via

polychaete worms. Adult blood flukes have been found in 26 species of but-

terflyfishes (Chaetodontidae) on the Great Barrier Reef, with fluke eggs

observed in hearts and gills (Yong et al., 2013). Another example is in the

ecologically and commercially important dusky grouper, Epinephelus margin-
atus, where histopathology revealed parasitic flatworms on the gills, resulting
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in inflammation and reduced immune function (Polinas et al., 2018). Indeed,

much research has also focussed on the recreationally and commercially

important coral reef barramundi (Lates calcarifer) as well, given its high

value in aquaculture industry and the propensity for parasitic infections to

interact with other environmental stressors (e.g., temperature and salinity;

Brazenor and Hutson, 2015). Technological advancements in, for example

environmental deoxyribonucleic acid (eDNA), are now making these out-

breaks more detectable and predictable (Gomes et al., 2017). Undoubtedly,

such energetic costs associated with parasite loads can be problematic on an

array of levels, given that some ectoparasites infect their hosts for months

to years. That said, parasites can greatly impact coral reef fish energetics

and therefore population dynamics and ecosystem health. This biotic stressor

will be continually examined, especially as it interacts with other biotic (e.g.,

disease) and abiotic (e.g., temperature, warming) stressors that are increasing

in severity in the Anthropocene.

3.2.4 Disease

Novel pathogen exposure in coral reef fishes is increasing. However, not all

diseases that are increasing in prevalence in coral reef fishes in the Anthropo-

cene (e.g., carcinomas, melanomas from increased UV exposure, potentially

due to ozone depletion) are from microbial exposure (i.e., from viruses,

bacteria, and fungi). Indeed, disease prevalence in coral reef fishes is not a

new topic. Rather, it has been a topic of intense investigation since the early

20th century, as many of the traditionally investigated diseases were common

in coral reef fishes used in aquarium trades and human consumption (e.g., espe-

cially live trade). Today, stress, poor water quality (e.g., coastal development,

sewage treatment issues, including an increased prevalence of pharmaceuticals

in sewage, etc.), overcrowding (e.g., for cultured fish species), and runoff

(e.g., industrial and agricultural) likely contribute to most of the diseases in

coral reef fishes.

In cultured fish species (e.g., for food fish, ornamentals, aquarium trade,

etc.), disease, whether viral, bacterial, or otherwise, represents a serious eco-

nomic loss, but this could be the case for disease in wild fish species as well

(e.g., fisheries, recreation, eco-tourism, etc.). Neurofibromatosis tumors or

nerve sheath tumors (e.g., in bicolor damselfishes, S. partitus) may stem from

a virus and can be fatal and is often associated with density issues (Fieber and

Schmale, 1994; Schmale, 1995; Schmale et al., 2002, 2004). Some viruses

(e.g., iridovirus) result in anemia and eventually spleen and kidney necrosis

as well as general immunosuppression, which makes fish susceptible to other

diseases (Mahardika et al., 2004). The hematopoietic necrosis virus, which

originated in freshwaters species (e.g., the salmonids) but can now affect coral

reef fishes, enters the fish from the base of the fins with the fish first exhibit-

ing a bulging abdomen and eyes, and then external hemorrhaging commences,
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ultimately leading to mortality (Harmache et al., 2006). Another issue origi-

nating from a virus is hemorrhagic septicemia; the virus enters the fish via

the gills, moves to the internal organs, and weakens the blood vessels, which

eventually collapse, causing the hemorrhaging. However, septicemia can also

come from bacterial infections and has been found to impact various

reef-associated cartilaginous and teleost fish species (Briones et al., 1998;

Camus et al., 2013; Keirstead et al., 2014). Natural outbreaks of Streptococcus
agalactiae, which can be transmitted between humans and aquatic species, in

wild groupers and various shark species have also resulted in many cases of

septicemia (Bowater et al., 2012). As many pathogens can be transmitted

between waterways via boats, trailers, and nets, some of these pathogens that

originated in freshwater systems, probably in North America in the Pacific

Northwest (i.e., likely via salmonids) or the Great Lakes, now impact coral

reef fishes.

Density issues, eutrophic bodies of water, and pollution can underpin these

bacterial infections and even result in tumor formation. Mycobacteriosis, for

example, enters through open wounds or the gastro-intestinal system, spreads

through the whole body of the fish via the circulatory and lymphatic systems,

and can be rampant in many coral reef fishes, resulting in high mortality rates

(Diamant et al., 2000). Evidence of melanoma in coral trout P. leopardus
likely stems from increased ultraviolet radiation exposure (Sweet et al.,

2012), which will continue to increase into the Anthropocene, especially in

shallow water coral reef environments. Tumor formation can also come from

chronic trauma, viral infections, or pollution as well as inbreeding and low

genetic diversity. The latter can be most prevalent in the ornamental and

aquarium fish trade while attempting to breed for certain traits (e.g., clown

anemonefish, A. ocellaris). Odontomas are benign tumors of dental tissue

and/or abnormal tooth formation that can lead to difficulties eating. Such

tumors can also occur in the lips, gill arches, or esophagus as neoplasms or

in the fat tissue as liposarcomas (Vorbach et al., 2018). Ultimately, the stres-

sors that result in disease in coral reef fishes are becoming more prevalent and

severe moving into the Anthropocene. Determining host ranges, timing, and

environmental cues will be important in identifying the cause, source, or ori-

gin of the pathogen, potential pathogen habitat, how it might interact with

other stressors, and how it can be best managed.

4 Interacting stressors

To date, the scientific community understands the least about the effects of

combined (i.e., two or more) stressors on the physiology of coral reef fishes.

Moreover, it is not always straightforward whether effects will be additive,

synergistic, or antagonistic, or whether the combined effect of the stressors

will equal, be greater than, or be less than the sum of their individual effects,

respectively (see Gunderson et al., 2016 for review). The most common
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combination of interacting stressors that has been addressed has been ocean

warming and acidification. Such studies found a decline in offspring quality

in anemonefish, A. melanopus (Miller et al., 2015). In juvenile spiny chromis,

A. polyacanthus, results suggest a negative correlation between behavioral

(i.e., responding to an alarm odor) and physiological (i.e., aerobic metabolic

scope) traits (Laubenstein et al., 2019). Moreover, such findings suggest the

potential for trade-offs that limit fish performance and even the capacity for

populations to adapt (Laubenstein et al., 2019). Combined warming and acid-

ification conditions also negatively impact metabolic traits such as aerobic

performance in two nocturnal cardinalfish species (Ostorhinchus doedeleini
and O. cyanosoma; Munday et al., 2009a) and predator-prey kinematics and

swimming performance in Ward’s damselfish (P. wardi; Allan et al., 2017)

from the Great Barrier Reef, Australia. Indeed, such combined stressors can

affect behavioral traits that are key for predator-prey dynamics, but perhaps

not unidirectionally (i.e., synergistically on overall predation rate, but antago-

nistically on predator selectivity; Ferrari et al., 2015b). Elevated temperatures

in combination with elevated pCO2 results in opposing effects in some traits,

such as swimming performance (e.g., yellowtail kingfish, S. lalandi; Watson

et al., 2018). Other studies have found neurobiological changes in response

to the combined stressors in the form of dopaminergic and serotoninergic sys-

tems are important for cleaner fish species (e.g., Labroides dimidiatus) and
their clients (e.g., Naso elegans); such cascading effects could impact commu-

nity structures (Paula et al., 2019). While in ovo, embryonic bamboo sharks

(Chiloscyllium punctatum) exhibit increased routine metabolic rates under

the combined stressors of warming and acidification (Rosa et al., 2014). Upon

hatching, juveniles exhibited decreased body condition (Rosa et al., 2014) as

well as neuro-oxidative damage and loss of aerobic potential under such com-

bined conditions (Rosa et al., 2016a). However, at 30 days post hatch, juve-

niles exhibited an antagonistic response to ocean warming and acidification

conditions in terms of digestive enzyme activities (Rosa et al., 2016b), while

metabolic costs increased and survival decreased (Rosa et al., 2014). Collec-

tively, these studies demonstrate the importance of life stage, physiology,

species, and habitat/life history strategies.

While these studies examining the combined effects of ocean warming and

acidification relevant scenarios represent an important step in assessing and

predicting the effects of climate change on coral reef fishes, they still lack

the third primary abiotic stressor, being hypoxia and ocean deoxygenation.

As discussed throughout this chapter, an array of experimental approaches

simulating these scenarios have suggested potential sensitivities of coral reef

fishes to any of these stressors in isolation, but we can only surmise the com-

bination (Poloczanska et al., 2016; Richardson et al., 2012). Yet, this so-called

“deadly trio” of ocean warming, acidification, and deoxygenation has been

previously involved in some of Earth’s mass extinction events (Bijma et al.,

2013). Therefore, understanding how the physiological performance of coral
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reef fishes will be affected by climate change is of paramount importance.

Despite the wealth of empirical data collected in the past decade, more

advanced experimental approaches are needed to address existing knowledge

gaps: the intraspecific variability in vulnerability to climate change stressors,

the nature of the stressor interaction (e.g., additive, synergistic, or antagonis-

tic), and the adaptative potential. The predicted co-occurrence of climate

change stressors highlights the need for multi-stressor experimentation to real-

istically assess effects of climate change on coral reef fishes.

Ocean warming and prey abundance as interacting stressors has also been

a topic of research priority, as increasing temperatures resulting from climate

change are causing tropical marine plankton communities—the primary food

sources for larval coral reef fishes—to shift in composition and distribution.

Studies assessing metabolic costs to different food rations as well as determin-

ing the energetic budgets of different feeding regimes under different warm-

ing scenarios have been important steps to addressing this issue (McLeod

et al., 2013). Newly hatched anemonefish, A. percula, exhibited decreased

survival rates, and those that made it to settlement stage took longer to do

so, longer to metamorphose, and exhibited lower body condition if they had

been exposed to warm temperatures and low quantity diets (McLeod et al.,

2013). These fish also exhibited higher energetic costs (i.e., via routine

O2 uptake rates) than their control counterparts, all of which suggests severe

impacts of warming waters and declining food availability on larval coral reef

fishes (McLeod et al., 2013). In adult breeding pairs of spiny chromis

(A. polyacanthus) maintained under one of three temperatures and one of

two feeding regimes, not only did elevated temperatures in isolation nega-

tively impact reproduction and egg size, but none of the pairs reproduced

under elevated temperatures and low quantity diets (Donelson et al., 2010).

Trade-offs could occur to maintain one process over another, and therefore fit-

ness, which could be seen in reproduction success and egg size/quality, as in

Donelson et al. (2010), but also growth and immune responses. Moreover, in

the wild, declining food availability may also result in fish spending more

time and energy foraging, making them more vulnerable to predation. Indeed,

this combination of stressors—elevated temperatures and decreased food

availability—has already been examined within the context of predator (i.e.,

chemical alarm cue) recognition. Lemon damselfish, Pomacentrus moluccensis,
while maintained under elevated temperatures and low food availability, not

only depleted energy reserves and reduced growth, as expected, but were also

unable to effectively elicit an anti-predatory response (Lienart et al., 2016).

Only one study to date on a coral reef associated fish species has addressed

the effects of elevated temperatures, reductions in food supply, and ocean

acidification conditions and concluded that such conditions may increase

starvation risk in larval cobia, R. canadum (Bignami et al., 2017).

While each of these 12 stressors (i.e., and others not discussed here) must

be first understood in isolation, conclusions as to how coral reef fish species,

Coral reef fishes in a multi-stressor world 39

ARTICLE IN PRESS



populations, and ecosystems will be affected in the Anthropocene can only be

drawn if multiple stressors are investigated together. Indeed, experiments that

address combinations of global and local stressors (i.e., warming and turbid-

ity/TSS, parasites and habitat degradation, noise and elevated pCO2, etc.) will

be crucial. While it seems logical to emphasize the “deadly trio,” local stres-

sors are as damaging particularly when paired with global stressors. Unde-

niably, this is also further complicated when investigating an array of

species with diverse life history strategies, across life history stages, and traits

spanning various levels of biological organization. Effects of multiple stres-

sors can be additive, synergistic, or antagonistic, and therefore if extrapola-

tions are made based on the effects of just one stressor, whole organismal,

species, population, and even ecosystem-level responses can be grossly under-

estimated or mis-represented. Indeed, multi-stressor experiments are the next

step in predicting the impact of the Anthropocene on coral reef fishes and the

ecosystems they support.

5 Acclimation and adaptation potential

Acclimation (or acclimatization), as nominally discussed earlier in this chap-

ter as relevant to aforementioned stressors, and adaptation are the primary

ways that organisms, such as the coral reef fishes, can survive and thrive

under new environmental conditions. Addressing the potential for and limita-

tions to acclimation and adaptation will be key research priorities for coral

reef fishes in the Anthropocene.

Acclimation represents a type of phenotypic plasticity where one genotype

has the capacity to express varying phenotypes when exposed to different

environmental conditions (Angilletta, 2009). Phenotypic plasticity represents

a rapid response mechanism (i.e., when compared to adaptation via selection

for certain phenotypes) acting at the level of the individual (i.e., as opposed to

populations) and may be key for organisms to respond to and survive chang-

ing environmental temperatures without genetic selection (Munday, 2014).

Such “rapid” strategies may play a substantial role in compensation to new

conditions, that is, if the new phenotype is beneficial. Yet, the capacity for

acclimation also depends on the species, population, and/or its demography

(Donelson and Munday, 2012; Eme and Bennett, 2009b) as well as prior his-

tory regarding environmental conditions (e.g., temperature; Angilletta, 2009).

Developmental and transgenerational acclimation as well as epigenetic effects

also play a role in how species respond to changes in their environments.

Early life-history traits and development are notoriously susceptible to

altered environmental conditions, but in some cases, developmental acclima-

tion can prime later stages for altered environmental conditions. It has been

found that the thermal environment of the eggs (Gagliano et al., 2007),

embryos, and juvenile early life stages—rearing temperatures—are important

(Illing et al., 2020) and will affect the thermal tolerance traits of the adults
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(Donelson et al., 2011). Increased rearing temperatures in cobia (R. canadum)
results in decreased digestion efficiency (Yufera et al., 2019). When spiny

chromis (A. polyacanthus) were exposed to elevated temperatures upon hatch

and following hatch for set periods of time, those that were exposed to at

least 30 days of elevated temperatures exhibited enhanced escape perfor-

mance traits at this early life stage (Spinks et al., 2019). However, those with

extended exposure (i.e., 108 days) to elevated temperatures exhibited reduc-

tions in body size, suggesting some trade-offs to long-term exposure and/or

developmental windows that are more or less receptive to thermal history

(Spinks et al., 2019). Developmental acclimation at the level of resting meta-

bolic rates is also evident in newly settled lemon damselfish (P. moluccensis;
Grenchik et al., 2012). Additionally, Donelson et al. (2011) determined that,

while spiny chromis, A. polyacanthus, reared for their entire lives at tempera-

tures that were 3 °C above ambient reduced their metabolic costs, they were

also smaller and had poorer body condition than their control counterparts.

In many species, early life stages exploit more thermally challenging habitats

than adults, which may be for protection and/or resources, suggesting there is

a perceived advantage of developmental plasticity (Dabruzzi et al., 2013;

Bouyoucos et al., 2022); yet, some of these habitats and therefore species—

especially at the edges of their thermal safety margins—might be most at risk

under future climate scenarios (Madeira et al., 2017b).

The environment of the parents can also dramatically influence tolerance

traits of the offspring (Donelson et al., 2012), and the molecular processes that

underpin both developmental and transgenerational acclimation to various cli-

mate change stressors (e.g., warming) are becoming more and more clear

(Veilleux et al., 2015). In some species (e.g., A. polyacanthus), paternal influ-
ence (e.g., fewer and poorer quality offspring) is more profound than maternal

influence with regards to elevated temperatures (Spinks et al., 2021). In this

example, such alterations could stem from the role stress has in regulating

sex hormones. Non-genetic inheritance (i.e., epigenetic changes) can underpin

various aspects of within-generation phenotypic plasticity in coral reef fishes

(Ryu et al., 2020). Environmental history can also carry over for many genera-

tions, as has been demonstrated in spiny chromis (A. polyacanthus) where step-
wise increases in temperature over generations can increase reproductive

performance (Donelson et al., 2016; Veilleux et al., 2018b) and restore aerobic

metabolic traits (Bernal et al., 2018). When parent cinnamon anemone fish,

A. melanopus, were exposed to elevated pCO2, their offspring (i.e., via

non-genetic inheritance) exhibited improved escape performance, metabolic

rate estimates, and growth, but benefits were not observed in all traits examined

(Allan et al., 2014; Miller et al., 2012). Limitations to transgenerational accli-

mation were also noted in juvenile spiny damselfish, A. polyacanthus, from par-

ents exposed to elevated pCO2, in terms of olfactory preferences and behavioral

lateralization (Welch et al., 2014). While the presence of rapid, developmental

and transgenerational acclimation still necessitates environmental preferences
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and behaviors (Donelson et al., 2012), it will buffer coral reef fish populations

against the challenges of climate change and other anthropogenic stressors over

the short term. However, it is important to note that, although transgenerational

acclimation may provide offspring with increased tolerance to challenging envi-

ronmental conditions, very few of the studies that have been executed to date

have been truly transgenerational; studies have been generally conducted with

one generation of progeny, despite the primordial germ cells of that generation

being exposed when the parental generation is exposed to such conditions,

which is a topic worthy of future investigation. Non-existent or even incomplete

developmental or transgenerational acclimation for coral reef fishes living in

the changing waters of the Anthropocene necessitates genetic adaptation.

Where acclimation can occur over relatively short time scales, adaptation

typically requires many generations and therefore, depending on the species,

much longer time frames. That said, the way in which various forms of accli-

mation interact with adaptation are still not understood and will be the focus

of research in the coming decades. Research questions centering around how

acclimation can shift mean phenotypes, and thus the strength or direction of

selection, without genetic change as well as how selection acts on traits

expressed by phenotypic plasticity, and whether changes in phenotypes can

become decoupled from changes in genotypes are at the forefront (reviewed

in Munday, 2014). The role of epigenetic variation is also factored as well,

as non-genetic inheritance, although considered for decades, has only just

been detailed under this umbrella. Indeed, when compared to genetic inheri-

tance, epigenetics may provide a faster route of informational transmission

across generations and is becoming better understood via the molecular pro-

cesses that are implicated in this phenomenon (e.g., methylation, histone mod-

ification, and non-coding ribonucleic acid (RNA) gene silencing; Jablonka

and Raz, 2009). The idea that we are no longer investigating these issues

of how organisms respond to change under the Darwinian “all or nothing”

concept of adaptation, is exciting. Future studies assessing the interactions

between developmental and transgenerational plasticity with epigenetic signa-

tures and adaptation will be imperative for understanding how coral reef

fishes and the ecosystems they support fare in the Anthropocene.

6 Knowledge gaps, technological advancements, and future
directions

While experimental studies assessing how coral reef fishes respond to the stres-

sors discussed here have rapidly expanded and produced a wealth of empirical

data, especially since the start of the 21st century, knowledge gaps remain.

Most notably, and because of the dynamic and multi-stressor nature of both

local and global climate change, interactions between stressors are still chal-

lenging to anticipate. Such challenges preclude our capacity to predict species,
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population, and ecosystem health in the Anthropocene. However, technological

advances (e.g., the National Sea Simulator at the Australian Institute of Marine

Sciences, which allows for an array of stressors to be simulated in static or

cycling conditions (e.g., Jarrold and Munday, 2018a, 2018b) over relevant time

courses, and the array of innovations in genomics) will allow for multi-stressor,

multi-level experimentation to not only be possible, but also time- and cost-

effective. It is also important to recognize short-term and long-term variabilities

in many of the discussed stressors. Different species may be sensitive to stres-

sors over different timescales. Cycling of various stressors, especially in combi-

nation, has not always been possible under laboratory experimentation, but is an

important next step. For example, studies revealed differential responses in the

exercise physiology of coral reef fishes exposed to elevated, yet cycling pCO2

conditions (i.e., to more closely represent natural reef conditions; Hannan et al.,

2020a) when compared to stable, yet elevated pCO2 conditions (Hannan et al.,

2020b, 2020c). Moreover, individual experiments do not precisely predict the

fate of future populations of coral reef fishes, but as we accumulate more

empirical evidence, we can more robustly estimate species reaction norms

and thus have better information for trait-based modeling. However, as demon-

strated, studies addressing physiological effects of multiple stressors on coral

reef fishes tend to take mechanistic approaches; yet experimental designs will

need to grow in size and complexity to be more effective. Moreover, molecular

underpinnings will need to be integrated more frequently into these studies, and

such approaches are far more tenable today than before with ongoing advances

in genomics (e.g., Bernal et al., 2020; Kang et al., 2022; Schunter et al., 2021).

Data—and long-term datasets that can and should be accessed—can then be

used to parameterize, test, and refine models to predict how combined stressors

will affect coral reef ecosystems and biodiversity.

Mesocosm experiments and other approaches where laboratory studies are

paired with field behaviors and responses (Cortese, 2021; Norin, 2018) can

expedite understanding the consequences of anthropogenic stressors across

the levels of biological organization, spanning from species to community

structure and ecosystem function (Fordham, 2015). When physiological

(e.g., as outlined and discussed in the above sections) and traditional ecologi-

cal (e.g., collections, surveys, monitoring, and translocation) approaches are

combined, studies can effectively start to bridge findings from the sometimes

single-stressor conditions in the laboratory to the natural world. A mesocosm

experiment, for example, is beneficial because it allows for replicated experi-

mental designs (e.g., statistical power) and standardized physiochemical con-

ditions, thus revealing elements observable in the wild (e.g., multi-species

interactions, community structure, diversity, trophic complexity, nutrient

cycling, etc.). Such combined eco-physiological studies can help identify

where plasticity in certain physiological traits could aid resilience to climate

change, for example (Seebacher et al., 2015). Mesocosm approaches can also
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reflect the consequences of sublethal and delayed effects on abundance and

community structure, and identify feedback loops, species interactions, condi-

tions that might drive species to endangerment, and the potential for restora-

tion programs. Ultimately, maintaining the fine-scale resolution typically

associated with physiological approaches while incorporating larger scale,

more bio-complex aspects of an ecosystem via mesocosm experimentation

will also help improve the accuracy of predictive models.

The variation in responses between individuals is also often overlooked in

studies investigating the effects of various abiotic and biotic stressors on mul-

tiple traits and/or levels of organization (Sunday et al., 2014). Many overarch-

ing predictions are based on the average response of a population, which can

often mask the—sometimes extreme—variability in how individuals respond.

Identifying “winners and losers” and determining species’ capacity for adap-

tation in the face of global change is crucial, but, especially in the case of

“winners,” can be detrimental, however, to abatement strategies (i.e., giving

a false sense that species will thrive despite adverse conditions). Basic infor-

mation on acclimation capacity as well as genetic (and epigenetic) variation in

fitness-associated traits also aids in making more informed decisions about the

impacts of various stressors on coral reef fishes over the timeframes that their

habitats are changing. However, modern molecular methods—high through-

put sequencing, the -omics (transcriptomics, genomics, metabolomics, proteo-

mics), bioinformatics—paired with physiological approaches, elucidates the

mechanistic basis for this crucial within and between generation plasticity.

It is also critical to understand how selection acts on variations in traits

and heritability to better predict the fate of coral reef fishes in a multi-stressor

world. This has been well studied with respect to fitness-related traits that are

influenced by elevated temperatures (Rummer and Munday, 2017) and CO2

(Munday et al., 2019), but only in a few select species and not in combination

or with any other stressor. While the importance of investigating multiple

traits simultaneously was highlighted earlier in this chapter, here within the

context of selection, it is especially important. For example, if two traits are

positively correlated, then selection can act unimpeded on the population

by acting in the same direction as the most variation in the population

(Munday et al., 2013). However, if two traits are negatively correlated, then

selection may act orthogonally in the direction of the most variation in the

population, which may result in limited influence on a population. Therefore,

selection for one trait will decrease performance in the other and vice versa

(Sunday et al., 2014). Describing this relationship between traits can therefore

aid in predicting whether selection can act freely on a population, or will be

constrained, thus limiting species’ ability to adapt to future conditions. Iden-

tifying correlations among key traits is, indeed, an important step in predicting

species persistence (Munday et al., 2019; Sunday et al., 2014). Incorporating

evolutionary and environmental parameters, such as sensitivity analyses and

evolutionary rescue models that have perhaps been more traditionally
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associated with terrestrial species and populations, may aid in predicting how

coral reef fish populations will respond to an array of stressors in the

Anthropocene.

7 Conservation and the future of coral reef fishes
in the Anthropocene

Unequivocally, coral reef fishes, the ecosystems they support, and the services

they provide are facing unprecedented threats from a wide range of multiple

stressors, including global climate change. Coral reefs have the highest biodi-

versity in the marine realm and accommodate �5000 fish species (Bellwood

et al., 2012). Yet, the capacity of coral reefs to provide ecosystem services

such as food and jobs, relied upon by millions of people worldwide, has

declined by half since the 1950s (Eddy et al., 2021). Indeed, the rate at which

conditions on coral reefs are changing today, since pre-Industrial times, as

well as the increased frequency and severity of extreme environmental events

(e.g., MHWs) is staggering. Since 2016, only 2% of the 2300km-long GBR

has not succumb to ocean warming induced coral bleaching (Hughes et al.,

2021). These conditions keep coral reef fishes at a heightened risk when it

comes to climate change and other anthropogenic influences, especially when

other stressors are considered. Even worse, due to such high habitat speciali-

zation, coral reef fishes in biodiversity hotspots (e.g., Coral Triangle) are at an

even greater risk of local extinction than regions with lower species richness

(Holbrook et al., 2015).

In this chapter, we highlight that a mechanistic understanding of physio-

logical processes governing individual organismal performance is the first

step for identifying drivers of coral reef fish health and population dynamics

in a multi-stressor world (Illing and Rummer, 2017). The array of physiologi-

cal approaches we outlined in this chapter, in conjunction with new and

emerging technologies, will help to reveal potential cause-and-effect relation-

ships and enable scientists to advise conservation managers by scaling results

from molecular, cellular, and individual organismal up to population levels

(Illing and Rummer, 2017). In a perfect world, most of the anthropogenic

stressors that coral reef fishes face today can and will be mitigated and hope-

fully quickly. However, it is more realistic that the coral reef fishes of the

Anthropocene will continue to face new and emerging stressors. Now, more

than ever, the future of coral reef fishes and the ecosystems they support

depend on a diverse, passionate, and engaged interdisciplinary scientific

community, knowledge co-production, evidence-based decision making, and

the most innovative management and conservation strategies. In the spirit of

conservation physiology and the quest for a “good Anthropocene” (Madliger

et al., 2017), the coral reef fishes represent a great flagship for public engage-

ment in the climate change crisis and an umbrella for the conservation of

marine biodiversity in a rapidly changing future ( Jepson and Barua, 2015).
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