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ARTICLE INFO ABSTRACT

Edited by: Michael Hedrick In teleost fishes, catecholamine-induced increases in the activity of cation exchangers compensate for decreases

in hemoglobin oxygen affinity and maximum blood oxygen carrying capacity caused by decreases in plasma pH

Keywords: (i.e., metabolic acidosis). The resultant red blood cell (RBC) swelling has been documented in sandbar (Carch-
Acidosis arhinus plumbeus) and epaulette (Hemiscyllium ocellatum) sharks following capture by rod-and-reel or after a 1.5 h
B;hr effect exposure to anoxia (respectively), although the underlying mechanisms remain unknown. To determine if RBC
inoxia swelling could be documented in other elasmobranch fishes, we collected blood samples from clearnose skate
Capture (Rostroraja eglanteria), blacktip reef shark (Carcharhinus melanopterus), and sicklefin lemon shark (Negaprion

acutidens) subjected to exhaustive exercise or air exposure (or both) and measured hematocrit, hemoglobin
concentration, RBC count, RBC volume, and mean corpuscular hemoglobin content. We did likewise with
sandbar and epaulette sharks to further explore the mechanisms driving swelling when present. We could not
document RBC swelling in any species; although hematocrit increased in all species (presumably due to RBC
ejection from the spleen or fluid shifts out of the vascular compartment) except epaulette shark. Our results
indicate RBC swelling and associated ion shifts in elasmobranch fishes is not inducible by exercise or hypoxia,
thus implying this response maybe of lesser importance for maintaining oxygen delivery during acute acidosis
than in teleost fishes.

Metabolic acidosis (i.e., reductions in plasma pH, pHe) occurs in both
teleost and elasmobranch fishes following exhaustive exercise, air
exposure, severe hypoxia, or exposure to elevated carbon dioxide (CO3)
levels (Wood et al., 1983; Farrell and Richards, 2009). The concomitant
reduction in red blood cell (RBC) intracellular pH (pH;) can reduce blood
oxygen (O2) affinity and maximum O carrying capacity if fixed-acid
Bohr and Root effects are present (Wood and Perry, 1985). These, in
turn, reduce the ability of blood to bind O at the gills and maximum
blood O, carrying capacity, and thus maximum rates of O delivery to
the tissues during recovery when high rates of Oy delivery are especially
needed (Hladky and Rink, 1977; Nikinmaa, 1983; Waser, 2011). There
are at least eight mechanisms participating in control of pH; and RBC
volume regulation that involve either a sodium pump, ion cotransport,
or active ion exchange mechanisms. The last includes sodium-proton
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exchangers (NHEs) which can be stimulated by cell shrinkage, de-
creases in pHj, and increases in plasma catecholamine levels (Motais
et al., 1989; Nikinmaa et al., 1990). Catecholamine activation of RBC
NHEs has been documented in teleost fishes through measurable in-
creases in RBC volume (i.e., RBC swelling) and pH; (e.g., Baroin et al.,
1983; Nikinmaa, 1983; Borgese et al., 1987; Fievet et al., 1987; Lowe
et al., 1998). The former results from exchange of an osmotically inac-
tive particle (H") for an osmotically active ion (Na™), but both increase
blood-O, affinity (the latter through decreases in red cell organic
phosphate and mean cell hemoglobin (Hb) concentrations; e.g., Nikin-
maa, 1983; Nikinmaa, 2011; Nikinmaa et al., 2019).

There is, however, yet no direct evidence of catecholamine activa-
tion of NHEs in RBC of elasmobranch fishes; although, multiple in-
vestigators have tried to induce this response in vitro (Lowe et al., 1995;
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Berenbrink et al., 2005). The general absence of Bohr and Root effects in
elasmobranch fish blood could explain the absence of catecholamine
activation of NHEs. The presence and extent of either effect in elasmo-
branch fish blood is, however, species-specific (reviewed by Morrison
et al., 2015). For example, blood from Arctic skate (Amblyraja hyper-
borea) and Eaton’s skate (Bathyraja eatonii) (Verde et al., 2005) exhibits
no Bohr effect, while blood from porbeagle (Lamna nassus) and blacktip
reef (Carcharhinus melanopterus) sharks do, both of which is of a
magnitude similar to teleost fishes (Larsen et al., 2003; Bouyoucos et al.,
2020). There are, however, several known differences between the ox-
ygen offloading mechanisms between teleost and elasmobranch fishes,
primarily the absence of plasma-accessible carbonic anhydrase (CA) in
teleost gills (Rummer and Brauner, 2011; Rummer et al., 2013; Randall
et al., 2014). Oxygen delivery in elasmobranch fishes may thus rely
more on other mechanisms of Hb-oxygen affinity modulation, such as
intracellular adenosine triphosphate (ATP) and glutamine triphosphate
(GTP) concentrations (Pennelly et al., 1975; Leray, 1979; Weber, 1983;
Tetens and Wells, 1984), intracellular chloride concentrations ([Cl"])
(Fievet et al., 1987; Nikinmaa and Salama, 1998), plasma trimethyl-
amine oxide (TMAO) and urea concentrations (Weber, 1983; Weber
et al.,, 1983a; Weber et al., 1983b; Tetens and Wells, 1984), or Oq
availability (Bushnell et al., 1982).

Elasmobranch fishes also generally do not display large increases in
hematocrit (Hct) following exhaustive exercise (Piiper et al., 1970; Lowe
et al., 1995) that would result from RBC swelling, fluid shifts out of the
vascular compartment, or release of RBC into the circulation due to
splenic contraction, or some combination thereof (Olson et al., 2003;
Hedrick et al., 2020). The presence of the latter in elasmobranch fishes is
still debated (Nilsson et al., 1975; Brill and Lai, 2016). RBC swelling or
alkalization of pH; (or both) have been documented in blood sampled
from juvenile sandbar and mako sharks (Carcharhinus plumbeus and
Isurus oxyrinchus, respectively) following rod-and-reel capture and
epaulette shark (Hemiscyllium ocellatum) following exposure to anoxic
water for 1.5 h (Brill et al., 2008; Chapman and Renshaw, 2009). In
contrast, RBCs from little skate (Leucoraja ocellata) and shovelnose ray
(Rhinobatos typus) do not exhibit RBC swelling or pH; regulation
following 24-48 h of exposure to normoxic hypercapnia or 10 min of
enforced exercise, respectively (Graham et al., 1990; Lowe et al., 1995).
The inconsistent observations of RBC swelling or pH; regulation in
elasmobranch fishes led us to try to document their presence in three
phylogenetically disparate elasmobranch species: clearnose skate (Ros-
troraja eglanteria), blacktip reef (Carcharhinus melanopterus), sicklefin
lemon (Negaprion acutidens) shark. Previous reports on RBC swelling in
sandbar and epaulette sharks are surprising and were revisited here. We
hypothesized that, if this response was common in elasmobranch fishes,
all species would show RBC swelling following stressors that induce
acidosis.

All work was approved by the William & Mary Institutional Animal
Care and Use Committee (IACUC-2019-03-18-13,539-rwbril), the James
Cook University Animal Ethics Committee (A2588 and A2394), and the
French Polynesian Ministere de la Promotion des Langues, de la Culture,
de la Communication, et de I’Environnement (Arrété 9524). Clearnose
skate (n = 10; 61 + 0.7 cm total length, mean + SE) were collected by
otter trawl in the Chesapeake Bay and maintained in recirculating in-
door holding tanks (20 + 1 °C) at the Virginia Institute of Marine Science
Eastern Shore Laboratory (VIMS-ESL). Sandbar shark (n = 10; 83 + 6 cm
TL) were caught by rod and reel in the coastal lagoons near Wachap-
reague, Virginia and maintained in a semi-flow-through outdoor holding
tank (28 + 1 °C) at the VIMS-ESL. Blacktip reef (n = 10; 57 + 5 cm TL)
and sicklefin lemon (n = 8; 67 + 9 cm TL) sharks were caught via gillnet
in shallow reef areas of Moorea, French Polynesia and maintained in
semi-flow-through outdoor holding tanks (29 + 1 °C) at the Centre de
Recherches Insulaires et Observatoire de I’Environnement. Epaulette
sharks (n = 10; 60 + 1 cm TL) were collected by hand near Orpheus
Island, Australia and maintained in recirculating holding tanks (26 + 1
°C) at the Marine and Aquaculture Research Facilities Unit at James
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Cook University. We maintained all subjects in captivity for at least two
weeks prior to use in experiments, except for epaulette shark, which had
been in captivity for eight months.

Individuals were subjected to three treatments conducted in random
order, with at least 8 days between treatments. For the “control” treat-
ment, we removed individuals from their holding tank via dipnet,
manually restrained them, and obtained blood samples in less than 1
min. For the “air exposure” treatment, we removed individuals from
their holding tank via dipnet, then held them out of the water for 5 min
prior to taking a blood sample. For the “exhaustive exercise” treatment,
we subjected individuals to 5 min of forced exercise using dipnets and
plastic pipe to provide tactile stimulus following Crear et al. (2019). This
was followed by 1 min of air exposure. Individuals subjected to the
“exhaustive exercise” treatment were returned to their holding tanks for
1 h prior to blood sampling to mimic procedures used with rod-and-reel
captured sharks by Brill et al. (2008). In all cases, we collected blood
samples into heparinized syringes through direct caudal venipuncture,
immediately transferred them to a cooler with ice packs and measured
all hematological parameters within 15 min. Elasmobranch blood pa-
rameters are neither disturbed by gentle handling and restraint is
associated with caudal venipuncture (Cooper and Morris, 1998), nor by
blood storage durations (less than 3 h; Schwieterman et al., 2019).
Indeed, our pH, range for all control individuals (Fig. 1) is similar to
those from cannulated Port Jackson sharks (Heterodontus portusjacksoni;
7.70-7.88; Cooper and Morris, 1998). Following the blood draw, Hct,
RBC counts, and blood hemoglobin concentration ([Hb]) were measured
using standard procedures (e.g. Brill et al., 2008). Mean corpuscular
hemoglobin content (MCHC) was calculated as [Hb] x (Hct/100) and
mean cell volume (MCV) as RBC count x Het™ . MCHC and MCV are the
primary indicators of RBC swelling, but we include Hct, [Hb] and RBC
count data to aid in interpretations of our results.

We measured pH, using the capillary pH electrode of a BMS3 Mk2
blood gas analyzer (Radiometer America, Westlake, OH, U.S.A.) main-
tained at the animal’s holding tank temperature, or a Hanna Instruments
99161pH meter (Woonsocket, RI, USA) maintained at 25 °C (the latter
following recommendations by Talwar et al., 2017). To measure intra-
cellular pH (pH;j), we centrifuged whole blood and then removed the
plasma and upper layer of RBCs. The remaining packed RBCs were
frozen in liquid nitrogen and thawed twice before measurement of pH;
using the capillary pH electrode of the BMS3 Mk2 blood gas analyzer
maintained at the holding tank temperature (Baker et al., 2009). We
were, however, able to measure pH; only in clearnose skate and sandbar
shark blood due to the unavailability of required instrumentation in
French Polynesia and Australia.

We conducted statistical analyses using R statistical software (R
Team, 2019) and analyzed pH. data by species using an analysis of
variance (ANOVA) procedure with treatment as a predictor. For in-
stances of a significant effect of treatment, pairwise comparisons among
the three treatments (control, air exposure, exhaustive exercise) were
made using Tukey’s post-hoc tests with the glht command in the mult-
comp package (Bretz et al., 2016). For the remaining metrics, we
calculated relative change from the control treatment on the same in-
dividual and conducted t-tests on the resulting relative change data with
each mean response tested for significant differences from zero. We also
compared these results to the raw data from Brill et al. (2008) to using an
analysis of variance (ANOVA) with Tukey’s post-hoc tests to assess
directly differences between our results and published values (statistical
values presented in Supplemental Tables 1,2) All statistics were evalu-
ated with a significance level of a = 0.05.

Even though there were significant reductions in pH, in all species
following both treatments (Fig. 1), we found no evidence of RBC
swelling under either protocol except for sicklefin lemon shark, as
indicated by the significant increase in MCV following exhaustive ex-
ercise (Fig. 2). This was, however, not accompanied by the expected
decrease in MCHC (Fig. 2). In contrast, Brill et al. (2008) showed that
similar reductions in pH. in sandbar shark following rod-and-reel
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Fig. 1. The plasma pH (pH,) in control individuals and those undergoing air exposure and exhaustive exercise protocols. Raw data from Brill et al., 2008 are shown
in the shaded box plots for sandbar shark and represent individuals that were held in captivity (“control”) and those captured with rod-and-reel. In all species, both
treatments resulted in significant reductions in pH.. Significant differences in mean pH, across treatments are denoted with different lowercase letters. The solid lines
within the boxes mark median values, the boundaries of the box the 25th and 75th percentiles, and the whiskers (error bars) above and below the box represent the
90th and 10th percentiles. Data points between the 90th and 10th percentiles are shown as open circles and those outside this interval are shown as filled circles. N =
10 for all species for all treatments excluding sicklefin lemon shark, where N = 8 and the Brill et al., 2008 sandbar shark study, where N = 6.

capture (Fig. 1) are accompanied by decreases in pH, - pH; and swelling
(the latter indicated by reductions in MCHC increases in MCV, Supple-
mental Fig. 1). We also measured increases in Hct in all species, except
for epaulette shark, following the air exposure and exhaustive exercise
protocols (Fig. 2). But surprisingly, increases in Hct were only accom-
panied by increases in [Hb] in blacktip reef sharks and clearnose skates.
This contrast with the results from Brill et al. (2008), where increases in
Hct were accompanied by increases in [Hb] (Supplemental Fig. 1). We
were also unable to document changes in RBC count, with the exception
of blacktip reef shark following air exposure. We have no immediate
explanation for the incongruity of these observations. We observed a
decrease in the pH, - pH; in both clearnose skate and sandbar shark
blood, with the latter being comparable to the changes previously
documented in sandbar shark blood following rod-and-reel capture by
Brill et al. (2008) (Supplemental Fig. 2) and epaulette shark (Hemi-
scyllium ocellatum) following exposure to anoxic water for 1.5 h (Brill
et al., 2008; Chapman and Renshaw, 2009). The stressors employed in
these two studies obviously crossed a physiological threshold, or
induced a suite of responses, that our treatments did not. Nikinmaa
(1992) summarizes the stimuli that could induce RBC swelling and
concomitant cell volume regulation responses, and our limited

observations do not allow rule out any of these mechanism, with the
exception of the Jacobs-Stewart cycle (Jacobs and Stewart, 1942), such
that observed decreases in MCHC and increases in MCV could be entirely
due to reductions in pHe. The reductions in pHe values we measured
were equivalent to those observed by Brill et al. (2008) (Fig. 2), and thus
should have also elicited a swelling response if pH. changes were
responsible for RBC swelling.

The reason we did not observe RBC swelling in the two species
known to have this response (sandbar and epaulette sharks) under other
stressful conditions may have also been related to the circumstances
under which fish were held. Chapman and Renshaw (2009) found sig-
nificant differences in the circulating lactate concentrations of un-
stressed wild-caught and captive epaulette sharks, implying a general
stress response in the latter. But in the same study, grey carpet shark
(Chiloscyllium punctatum) maintained in captivity for two weeks had
smaller hematological responses (e.g., lower fractional changes in Hct)
than wild-caught individuals following exposure to anoxia. This smaller
treatment effect implies that diminution of hematological responses can
occur during captivity. Likewise, Gilmour et al. (1994) observed down
regulation of RBC adrenoreceptors in response to chronically increased
plasma catecholamines although, as previously noted, there is yet no
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Fig. 2. The fractional changes (%) in hematological parameters in blood collected from animals exposed to air and exhaustive exercise treatments relative to control
conditions. Significant differences from zero are denoted with asterisks. Box and whisker plots represent raw data, with whiskers representing maximum and
minimum points within 1.5 times the interquartile range above the upper quartile and below the lower quartile. Black squares denote points outside of this range.
Abbreviations: hematocrit (Hct), hemoglobin concentration ([Hb]), mean cell volume (MCV), mean corpuscular hemoglobin content (MCHC), red blood cell count

(RBC count).

direct evidence of catecholamine activation of NHEs in RBC of elasmo-
branch fishes. The sandbar shark we used were dip-netted and trans-
ferred between tanks for use in another study. This may have led to a
sustained stress response obscuring the responses to our acute stress
treatments. Wise et al. (1998) found that the hypoxia tolerances of
epaulette shark change with time in captivity, implying there may be
some habituation. In contrast to the sandbar shark we studied, the
epaulette shark had been in captivity for eight months, and we assume
they would have habituated to captivity. Yet, our treatments could not
induce RBC swelling responses in either; although, both had been

previously shown to possess RBC swelling (Brill et al., 2008; Chapman
and Renshaw, 2009). In summary, the RBC swelling response in elas-
mobranch fishes appears to be labile and not species-specific, and
further research regarding the role of NHEs on elasmobranch pH; is
warranted.
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