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A B S T R A C T   

In teleost fishes, catecholamine-induced increases in the activity of cation exchangers compensate for decreases 
in hemoglobin oxygen affinity and maximum blood oxygen carrying capacity caused by decreases in plasma pH 
(i.e., metabolic acidosis). The resultant red blood cell (RBC) swelling has been documented in sandbar (Carch
arhinus plumbeus) and epaulette (Hemiscyllium ocellatum) sharks following capture by rod-and-reel or after a 1.5 h 
exposure to anoxia (respectively), although the underlying mechanisms remain unknown. To determine if RBC 
swelling could be documented in other elasmobranch fishes, we collected blood samples from clearnose skate 
(Rostroraja eglanteria), blacktip reef shark (Carcharhinus melanopterus), and sicklefin lemon shark (Negaprion 
acutidens) subjected to exhaustive exercise or air exposure (or both) and measured hematocrit, hemoglobin 
concentration, RBC count, RBC volume, and mean corpuscular hemoglobin content. We did likewise with 
sandbar and epaulette sharks to further explore the mechanisms driving swelling when present. We could not 
document RBC swelling in any species; although hematocrit increased in all species (presumably due to RBC 
ejection from the spleen or fluid shifts out of the vascular compartment) except epaulette shark. Our results 
indicate RBC swelling and associated ion shifts in elasmobranch fishes is not inducible by exercise or hypoxia, 
thus implying this response maybe of lesser importance for maintaining oxygen delivery during acute acidosis 
than in teleost fishes.   

Metabolic acidosis (i.e., reductions in plasma pH, pHe) occurs in both 
teleost and elasmobranch fishes following exhaustive exercise, air 
exposure, severe hypoxia, or exposure to elevated carbon dioxide (CO2) 
levels (Wood et al., 1983; Farrell and Richards, 2009). The concomitant 
reduction in red blood cell (RBC) intracellular pH (pHi) can reduce blood 
oxygen (O2) affinity and maximum O2 carrying capacity if fixed-acid 
Bohr and Root effects are present (Wood and Perry, 1985). These, in 
turn, reduce the ability of blood to bind O2 at the gills and maximum 
blood O2 carrying capacity, and thus maximum rates of O2 delivery to 
the tissues during recovery when high rates of O2 delivery are especially 
needed (Hladky and Rink, 1977; Nikinmaa, 1983; Waser, 2011). There 
are at least eight mechanisms participating in control of pHi and RBC 
volume regulation that involve either a sodium pump, ion cotransport, 
or active ion exchange mechanisms. The last includes sodium-proton 

exchangers (NHEs) which can be stimulated by cell shrinkage, de
creases in pHi, and increases in plasma catecholamine levels (Motais 
et al., 1989; Nikinmaa et al., 1990). Catecholamine activation of RBC 
NHEs has been documented in teleost fishes through measurable in
creases in RBC volume (i.e., RBC swelling) and pHi (e.g., Baroin et al., 
1983; Nikinmaa, 1983; Borgese et al., 1987; Fievet et al., 1987; Lowe 
et al., 1998). The former results from exchange of an osmotically inac
tive particle (H+) for an osmotically active ion (Na+), but both increase 
blood-O2 affinity (the latter through decreases in red cell organic 
phosphate and mean cell hemoglobin (Hb) concentrations; e.g., Nikin
maa, 1983; Nikinmaa, 2011; Nikinmaa et al., 2019). 

There is, however, yet no direct evidence of catecholamine activa
tion of NHEs in RBC of elasmobranch fishes; although, multiple in
vestigators have tried to induce this response in vitro (Lowe et al., 1995; 

* Corresponding author. 
E-mail address: gschwiet1@gmail.com (G.D. Schwieterman).  

Contents lists available at ScienceDirect 

Comparative Biochemistry and Physiology, Part A 

journal homepage: www.elsevier.com/locate/cbpa 

https://doi.org/10.1016/j.cbpa.2021.110978 
Received 27 January 2021; Received in revised form 6 May 2021; Accepted 7 May 2021   

mailto:gschwiet1@gmail.com
www.sciencedirect.com/science/journal/10956433
https://www.elsevier.com/locate/cbpa
https://doi.org/10.1016/j.cbpa.2021.110978
https://doi.org/10.1016/j.cbpa.2021.110978
https://doi.org/10.1016/j.cbpa.2021.110978
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cbpa.2021.110978&domain=pdf


Comparative Biochemistry and Physiology, Part A 258 (2021) 110978

2

Berenbrink et al., 2005). The general absence of Bohr and Root effects in 
elasmobranch fish blood could explain the absence of catecholamine 
activation of NHEs. The presence and extent of either effect in elasmo
branch fish blood is, however, species-specific (reviewed by Morrison 
et al., 2015). For example, blood from Arctic skate (Amblyraja hyper
borea) and Eaton’s skate (Bathyraja eatonii) (Verde et al., 2005) exhibits 
no Bohr effect, while blood from porbeagle (Lamna nassus) and blacktip 
reef (Carcharhinus melanopterus) sharks do, both of which is of a 
magnitude similar to teleost fishes (Larsen et al., 2003; Bouyoucos et al., 
2020). There are, however, several known differences between the ox
ygen offloading mechanisms between teleost and elasmobranch fishes, 
primarily the absence of plasma-accessible carbonic anhydrase (CA) in 
teleost gills (Rummer and Brauner, 2011; Rummer et al., 2013; Randall 
et al., 2014). Oxygen delivery in elasmobranch fishes may thus rely 
more on other mechanisms of Hb‑oxygen affinity modulation, such as 
intracellular adenosine triphosphate (ATP) and glutamine triphosphate 
(GTP) concentrations (Pennelly et al., 1975; Leray, 1979; Weber, 1983; 
Tetens and Wells, 1984), intracellular chloride concentrations ([Cl− ]) 
(Fievet et al., 1987; Nikinmaa and Salama, 1998), plasma trimethyl
amine oxide (TMAO) and urea concentrations (Weber, 1983; Weber 
et al., 1983a; Weber et al., 1983b; Tetens and Wells, 1984), or O2 
availability (Bushnell et al., 1982). 

Elasmobranch fishes also generally do not display large increases in 
hematocrit (Hct) following exhaustive exercise (Piiper et al., 1970; Lowe 
et al., 1995) that would result from RBC swelling, fluid shifts out of the 
vascular compartment, or release of RBC into the circulation due to 
splenic contraction, or some combination thereof (Olson et al., 2003; 
Hedrick et al., 2020). The presence of the latter in elasmobranch fishes is 
still debated (Nilsson et al., 1975; Brill and Lai, 2016). RBC swelling or 
alkalization of pHi (or both) have been documented in blood sampled 
from juvenile sandbar and mako sharks (Carcharhinus plumbeus and 
Isurus oxyrinchus, respectively) following rod-and-reel capture and 
epaulette shark (Hemiscyllium ocellatum) following exposure to anoxic 
water for 1.5 h (Brill et al., 2008; Chapman and Renshaw, 2009). In 
contrast, RBCs from little skate (Leucoraja ocellata) and shovelnose ray 
(Rhinobatos typus) do not exhibit RBC swelling or pHi regulation 
following 24–48 h of exposure to normoxic hypercapnia or 10 min of 
enforced exercise, respectively (Graham et al., 1990; Lowe et al., 1995). 
The inconsistent observations of RBC swelling or pHi regulation in 
elasmobranch fishes led us to try to document their presence in three 
phylogenetically disparate elasmobranch species: clearnose skate (Ros
troraja eglanteria), blacktip reef (Carcharhinus melanopterus), sicklefin 
lemon (Negaprion acutidens) shark. Previous reports on RBC swelling in 
sandbar and epaulette sharks are surprising and were revisited here. We 
hypothesized that, if this response was common in elasmobranch fishes, 
all species would show RBC swelling following stressors that induce 
acidosis. 

All work was approved by the William & Mary Institutional Animal 
Care and Use Committee (IACUC-2019-03-18-13,539-rwbril), the James 
Cook University Animal Ethics Committee (A2588 and A2394), and the 
French Polynesian Ministère de la Promotion des Langues, de la Culture, 
de la Communication, et de l’Environnement (Arrêté 9524). Clearnose 
skate (n = 10; 61 ± 0.7 cm total length, mean ± SE) were collected by 
otter trawl in the Chesapeake Bay and maintained in recirculating in
door holding tanks (20 ± 1 ◦C) at the Virginia Institute of Marine Science 
Eastern Shore Laboratory (VIMS-ESL). Sandbar shark (n = 10; 83 ± 6 cm 
TL) were caught by rod and reel in the coastal lagoons near Wachap
reague, Virginia and maintained in a semi-flow-through outdoor holding 
tank (28 ± 1 ◦C) at the VIMS-ESL. Blacktip reef (n = 10; 57 ± 5 cm TL) 
and sicklefin lemon (n = 8; 67 ± 9 cm TL) sharks were caught via gillnet 
in shallow reef areas of Moorea, French Polynesia and maintained in 
semi-flow-through outdoor holding tanks (29 ± 1 ◦C) at the Centre de 
Recherches Insulaires et Observatoire de l’Environnement. Epaulette 
sharks (n = 10; 60 ± 1 cm TL) were collected by hand near Orpheus 
Island, Australia and maintained in recirculating holding tanks (26 ± 1 
◦C) at the Marine and Aquaculture Research Facilities Unit at James 

Cook University. We maintained all subjects in captivity for at least two 
weeks prior to use in experiments, except for epaulette shark, which had 
been in captivity for eight months. 

Individuals were subjected to three treatments conducted in random 
order, with at least 8 days between treatments. For the “control” treat
ment, we removed individuals from their holding tank via dipnet, 
manually restrained them, and obtained blood samples in less than 1 
min. For the “air exposure” treatment, we removed individuals from 
their holding tank via dipnet, then held them out of the water for 5 min 
prior to taking a blood sample. For the “exhaustive exercise” treatment, 
we subjected individuals to 5 min of forced exercise using dipnets and 
plastic pipe to provide tactile stimulus following Crear et al. (2019). This 
was followed by 1 min of air exposure. Individuals subjected to the 
“exhaustive exercise” treatment were returned to their holding tanks for 
1 h prior to blood sampling to mimic procedures used with rod-and-reel 
captured sharks by Brill et al. (2008). In all cases, we collected blood 
samples into heparinized syringes through direct caudal venipuncture, 
immediately transferred them to a cooler with ice packs and measured 
all hematological parameters within 15 min. Elasmobranch blood pa
rameters are neither disturbed by gentle handling and restraint is 
associated with caudal venipuncture (Cooper and Morris, 1998), nor by 
blood storage durations (less than 3 h; Schwieterman et al., 2019). 
Indeed, our pHe range for all control individuals (Fig. 1) is similar to 
those from cannulated Port Jackson sharks (Heterodontus portusjacksoni; 
7.70–7.88; Cooper and Morris, 1998). Following the blood draw, Hct, 
RBC counts, and blood hemoglobin concentration ([Hb]) were measured 
using standard procedures (e.g. Brill et al., 2008). Mean corpuscular 
hemoglobin content (MCHC) was calculated as [Hb] × (Hct/100) and 
mean cell volume (MCV) as RBC count × Hct− 1. MCHC and MCV are the 
primary indicators of RBC swelling, but we include Hct, [Hb] and RBC 
count data to aid in interpretations of our results. 

We measured pHe using the capillary pH electrode of a BMS3 Mk2 
blood gas analyzer (Radiometer America, Westlake, OH, U.S.A.) main
tained at the animal’s holding tank temperature, or a Hanna Instruments 
99161pH meter (Woonsocket, RI, USA) maintained at 25 ◦C (the latter 
following recommendations by Talwar et al., 2017). To measure intra
cellular pH (pHi), we centrifuged whole blood and then removed the 
plasma and upper layer of RBCs. The remaining packed RBCs were 
frozen in liquid nitrogen and thawed twice before measurement of pHi 
using the capillary pH electrode of the BMS3 Mk2 blood gas analyzer 
maintained at the holding tank temperature (Baker et al., 2009). We 
were, however, able to measure pHi only in clearnose skate and sandbar 
shark blood due to the unavailability of required instrumentation in 
French Polynesia and Australia. 

We conducted statistical analyses using R statistical software (R 
Team, 2019) and analyzed pHe data by species using an analysis of 
variance (ANOVA) procedure with treatment as a predictor. For in
stances of a significant effect of treatment, pairwise comparisons among 
the three treatments (control, air exposure, exhaustive exercise) were 
made using Tukey’s post-hoc tests with the glht command in the mult
comp package (Bretz et al., 2016). For the remaining metrics, we 
calculated relative change from the control treatment on the same in
dividual and conducted t-tests on the resulting relative change data with 
each mean response tested for significant differences from zero. We also 
compared these results to the raw data from Brill et al. (2008) to using an 
analysis of variance (ANOVA) with Tukey’s post-hoc tests to assess 
directly differences between our results and published values (statistical 
values presented in Supplemental Tables 1,2) All statistics were evalu
ated with a significance level of α = 0.05. 

Even though there were significant reductions in pHe in all species 
following both treatments (Fig. 1), we found no evidence of RBC 
swelling under either protocol except for sicklefin lemon shark, as 
indicated by the significant increase in MCV following exhaustive ex
ercise (Fig. 2). This was, however, not accompanied by the expected 
decrease in MCHC (Fig. 2). In contrast, Brill et al. (2008) showed that 
similar reductions in pHe in sandbar shark following rod-and-reel 
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capture (Fig. 1) are accompanied by decreases in pHe - pHi and swelling 
(the latter indicated by reductions in MCHC increases in MCV, Supple
mental Fig. 1). We also measured increases in Hct in all species, except 
for epaulette shark, following the air exposure and exhaustive exercise 
protocols (Fig. 2). But surprisingly, increases in Hct were only accom
panied by increases in [Hb] in blacktip reef sharks and clearnose skates. 
This contrast with the results from Brill et al. (2008), where increases in 
Hct were accompanied by increases in [Hb] (Supplemental Fig. 1). We 
were also unable to document changes in RBC count, with the exception 
of blacktip reef shark following air exposure. We have no immediate 
explanation for the incongruity of these observations. We observed a 
decrease in the pHe - pHi in both clearnose skate and sandbar shark 
blood, with the latter being comparable to the changes previously 
documented in sandbar shark blood following rod-and-reel capture by 
Brill et al. (2008) (Supplemental Fig. 2) and epaulette shark (Hemi
scyllium ocellatum) following exposure to anoxic water for 1.5 h (Brill 
et al., 2008; Chapman and Renshaw, 2009). The stressors employed in 
these two studies obviously crossed a physiological threshold, or 
induced a suite of responses, that our treatments did not. Nikinmaa 
(1992) summarizes the stimuli that could induce RBC swelling and 
concomitant cell volume regulation responses, and our limited 

observations do not allow rule out any of these mechanism, with the 
exception of the Jacobs-Stewart cycle (Jacobs and Stewart, 1942), such 
that observed decreases in MCHC and increases in MCV could be entirely 
due to reductions in pHe. The reductions in pHe values we measured 
were equivalent to those observed by Brill et al. (2008) (Fig. 2), and thus 
should have also elicited a swelling response if pHe changes were 
responsible for RBC swelling. 

The reason we did not observe RBC swelling in the two species 
known to have this response (sandbar and epaulette sharks) under other 
stressful conditions may have also been related to the circumstances 
under which fish were held. Chapman and Renshaw (2009) found sig
nificant differences in the circulating lactate concentrations of un
stressed wild-caught and captive epaulette sharks, implying a general 
stress response in the latter. But in the same study, grey carpet shark 
(Chiloscyllium punctatum) maintained in captivity for two weeks had 
smaller hematological responses (e.g., lower fractional changes in Hct) 
than wild-caught individuals following exposure to anoxia. This smaller 
treatment effect implies that diminution of hematological responses can 
occur during captivity. Likewise, Gilmour et al. (1994) observed down 
regulation of RBC adrenoreceptors in response to chronically increased 
plasma catecholamines although, as previously noted, there is yet no 

Fig. 1. The plasma pH (pHe) in control individuals and those undergoing air exposure and exhaustive exercise protocols. Raw data from Brill et al., 2008 are shown 
in the shaded box plots for sandbar shark and represent individuals that were held in captivity (“control”) and those captured with rod-and-reel. In all species, both 
treatments resulted in significant reductions in pHe. Significant differences in mean pHe across treatments are denoted with different lowercase letters. The solid lines 
within the boxes mark median values, the boundaries of the box the 25th and 75th percentiles, and the whiskers (error bars) above and below the box represent the 
90th and 10th percentiles. Data points between the 90th and 10th percentiles are shown as open circles and those outside this interval are shown as filled circles. N =
10 for all species for all treatments excluding sicklefin lemon shark, where N = 8 and the Brill et al., 2008 sandbar shark study, where N = 6. 
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direct evidence of catecholamine activation of NHEs in RBC of elasmo
branch fishes. The sandbar shark we used were dip-netted and trans
ferred between tanks for use in another study. This may have led to a 
sustained stress response obscuring the responses to our acute stress 
treatments. Wise et al. (1998) found that the hypoxia tolerances of 
epaulette shark change with time in captivity, implying there may be 
some habituation. In contrast to the sandbar shark we studied, the 
epaulette shark had been in captivity for eight months, and we assume 
they would have habituated to captivity. Yet, our treatments could not 
induce RBC swelling responses in either; although, both had been 

previously shown to possess RBC swelling (Brill et al., 2008; Chapman 
and Renshaw, 2009). In summary, the RBC swelling response in elas
mobranch fishes appears to be labile and not species-specific, and 
further research regarding the role of NHEs on elasmobranch pHi is 
warranted. 
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